1.Analysis of human parvovirus B19 nucleic acid detection in blood products in China
Yue WANG ; Xiaobei ZHENG ; Qin GONG ; Ying ZHAO ; Yuanxiu LUO ; Dandan YANG ; Linlin ZHANG ; Zheng JIANG ; Gan PENG ; Jin ZHANG ; Bingbing KE
Chinese Journal of Blood Transfusion 2025;38(7):950-957
Objective: To analyze the nucleic acid load of human parvovirus B19 in major commercially available blood products in China, including human albumin, human intravenous immunoglobulin, human rabies immunoglobulin and various coagulation factor products, aiming to provide evidence for improving blood product manufacturing processes and quality control of source plasma. Methods: A total of 98 batches of coagulation factor products were tested for human parvovirus B19 nucleic acid using real-time fluorescent quantitative PCR, including 42 batches of human prothrombin complex, 35 batches of human coagulation factor Ⅷ, and 21 batches of human fibrinogen. Additionally, 6 batches of human albumin, 6 batches of human intravenous immunoglobulin, and 38 batches of human rabies immunoglobulin were tested for human parvovirus B19 nucleic acid. Results: Human parvovirus B19 nucleic acid were undetectable in human albumin, human intravenous immunoglobulin and human rabies immunoglobulin. Among the 98 batches of coagulation factor products tested for human parvovirus B19 nucleic acid, B19 nucleic acid reactivity rate was 69.0% (29/42) for human prothrombin complex batches, but nucleic acid concentration were all significantly lower than 10
IU/mL. The reactivity rate of B19 nucleic acid in 35 batches of human coagulation factor Ⅷ was 48.6% (17/35), with nucleic acid concentration all below 10
IU/mL. The reactivity rate of B19 nucleic acid in 21 batches of human fibrinogen was 61.9% (13/21), with nucleic acid concentration all below 10
IU/mL. Conclusion: No human parvovirus B19 has been detected in human albumin, human intravenous immunoglobulin, or human rabies immunoglobulin. Human parvovirus B19 nucleic acid may exist in commercially available coagulation factor products, highlighting the need for enhanced screening of human parvovirus B19 nucleic acid in these products. It is also recommended that B19 viral nucleic acid testing be conducted on source plasma, particularly for coagulation factor products.
2.Analysis of human parvovirus B19 nucleic acid detection in blood products in China
Yue WANG ; Xiaobei ZHENG ; Qin GONG ; Ying ZHAO ; Yuanxiu LUO ; Dandan YANG ; Linlin ZHANG ; Zheng JIANG ; Gan PENG ; Jin ZHANG ; Bingbing KE
Chinese Journal of Blood Transfusion 2025;38(7):950-957
Objective: To analyze the nucleic acid load of human parvovirus B19 in major commercially available blood products in China, including human albumin, human intravenous immunoglobulin, human rabies immunoglobulin and various coagulation factor products, aiming to provide evidence for improving blood product manufacturing processes and quality control of source plasma. Methods: A total of 98 batches of coagulation factor products were tested for human parvovirus B19 nucleic acid using real-time fluorescent quantitative PCR, including 42 batches of human prothrombin complex, 35 batches of human coagulation factor Ⅷ, and 21 batches of human fibrinogen. Additionally, 6 batches of human albumin, 6 batches of human intravenous immunoglobulin, and 38 batches of human rabies immunoglobulin were tested for human parvovirus B19 nucleic acid. Results: Human parvovirus B19 nucleic acid were undetectable in human albumin, human intravenous immunoglobulin and human rabies immunoglobulin. Among the 98 batches of coagulation factor products tested for human parvovirus B19 nucleic acid, B19 nucleic acid reactivity rate was 69.0% (29/42) for human prothrombin complex batches, but nucleic acid concentration were all significantly lower than 10
IU/mL. The reactivity rate of B19 nucleic acid in 35 batches of human coagulation factor Ⅷ was 48.6% (17/35), with nucleic acid concentration all below 10
IU/mL. The reactivity rate of B19 nucleic acid in 21 batches of human fibrinogen was 61.9% (13/21), with nucleic acid concentration all below 10
IU/mL. Conclusion: No human parvovirus B19 has been detected in human albumin, human intravenous immunoglobulin, or human rabies immunoglobulin. Human parvovirus B19 nucleic acid may exist in commercially available coagulation factor products, highlighting the need for enhanced screening of human parvovirus B19 nucleic acid in these products. It is also recommended that B19 viral nucleic acid testing be conducted on source plasma, particularly for coagulation factor products.
3.Niranthin ameliorates Crohn's disease-like enteritis in mice by inhibiting intestinal epithelial cell apoptosis and protecting intestinal barrier via modulating p38/JNK signaling.
Lu TAO ; Yue CHEN ; Linlin HUANG ; Wang ZHENG ; Xue SONG ; Ping XIANG ; Jianguo HU
Journal of Southern Medical University 2025;45(11):2483-2495
OBJECTIVES:
To investigate the therapeutic effect of the natural compound niranthin on Crohn's disease-like colitis in mice and explore the underlying molecular mechanisms.
METHODS:
In a mouse model of colitis induced by 2,4,6-trinitro-benzenesulfonic acid (TNBS), the therapeutic effect of niranthin was evaluated by observing the changes in body weight, disease activity index (DAI), and colon length of the mice. The levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-17A and IL-10) in the intestinal mucosal tissue were detected using ELISA and quantitative real-time PCR (qRT-PCR). TUNEL staining and Western blotting were used to assess intestinal epithelial cell apoptosis and the expressions of Bcl-2 and Bax. The expression levels of tight junction proteins (ZO-1 and claudin-1) and the activation of the p38/JNK signaling pathway were investigated using Western blotting, and diprovocim intervention experiments were conducted to explore the molecular regulatory mechanism of niranthin.
RESULTS:
Niranthin treatment significantly increased body weight of TNBS-treated mice, lowered the DAI and histological inflammation scores, and increased colon length of the mice. The niranthin-treated mouse models showed obviously reduced protein and mRNA levels of IL-6, IL-1β, IL-17A, and TNF-α and upregulated expression of IL-10 in the colon tissue. TUNEL staining and Western blotting demonstrated that niranthin significantly inhibited intestinal epithelial cell apoptosis and activated the anti-apoptotic pathway in the mouse models. Niranthin treatment obviously upregulated the expression levels of ZO-1 and claudin-1 and downregulated the phosphorylation levels of p38 and JNK in the colon tissues of the mice. Diprovocim intervention obviously attenuated the inactivation of the p38/JNK signaling pathway induced by niranthin in the mouse models.
CONCLUSIONS
Niranthin ameliorates TNBS-induced Crohn's disease-like colitis in mice by inhibiting intestinal epithelial cell apoptosis and protecting the integrity of the intestinal barrier via regulating the activation of the p38/JNK signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Mice
;
Intestinal Mucosa/drug effects*
;
Crohn Disease/drug therapy*
;
MAP Kinase Signaling System/drug effects*
;
Epithelial Cells/drug effects*
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Male
4.Cation Channel TMEM63A Autonomously Facilitates Oligodendrocyte Differentiation at an Early Stage.
Yue-Ying WANG ; Dan WU ; Yongkun ZHAN ; Fei LI ; Yan-Yu ZANG ; Xiao-Yu TENG ; Linlin ZHANG ; Gui-Fang DUAN ; He WANG ; Rong XU ; Guiquan CHEN ; Yun XU ; Jian-Jun YANG ; Yongguo YU ; Yun Stone SHI
Neuroscience Bulletin 2025;41(4):615-632
Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A; p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca2+ influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a-/- OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a-/- OPCs in vitro and myelination in Tmem63a-/- mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca2+ influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.
Animals
;
Cell Differentiation/physiology*
;
Oligodendroglia/metabolism*
;
Mice, Knockout
;
Mice
;
Male
;
Myelin Sheath/metabolism*
;
Humans
;
Child
;
Cells, Cultured
;
Oligodendrocyte Precursor Cells/metabolism*
5.Original Article Association between Exposure of Rare Earth Elements and Outcomes of In Vitro Fertilization-Embryo Transfer in Beijing
Wang YUTONG ; Li JING ; Xu SHIRONG ; Lin SHENGLI ; Hou ZHENCHEN ; Wang LINLIN ; Huang YALI ; Sun YUE ; Guo WEI ; Yan LAILAI ; Wang YING ; Tian CHAN
Biomedical and Environmental Sciences 2024;37(8):876-886
Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses. Methods A total of 141 couples were included.Blood and follicular fluid from the wives and semen plasma from the husbands,were analyzed for REEs using inductively coupled plasma mass spectrometry(ICP-MS).Spearman's correlation coefficients and the Mann-Whitney U test were used to assess correlations and compare REE concentrations among three types of samples,respectively.Logistic models were utilized to estimate the individual REE effect on IVF-ET outcomes,while BKMR and WQS models explored the mixture of REE interaction effects on IVF-ET outcomes. Results Higher La concentration in semen(median 0.089 ng/mL,P=0.03)was associated with a lower fertilization rate.However,this effect was not observed after artificial selection intervention through intracytoplasmic sperm injection(ICSI)(P=0.27).In semen,the REEs mixture did not exhibit any significant association with clinical pregnancy. Conclusion Our study revealed a potential association between high La exposure in semen and a decline in fertilization rate,but not clinical pregnancy rate.This is the first to report REEs concentrations in follicular fluid with La,Ce,Pr,and Nd found at significantly lower concentrations than in serum,suggesting that these four REEs may not accumulate in the female reproductive system.However,at the current exposure levels,mixed REEs exposure did not exhibit reproductive toxicity.
6.Application and prospect of image registration technology in the diagnosis and treatment of temporomandibular joint disor-ders
Yuting XIE ; Wen TANG ; Yue WU ; Libo CAO ; Jiajun MA ; Iman IZADIKHAH ; Yan CHEN ; Dan CAO ; Bin YAN ; Linlin ZHU ; Lizhe XIE
STOMATOLOGY 2024;44(10):770-774
With advancements in radiology,endoscopic techniques,surgical treatments,cell biology and molecular biology,the un-derstanding of temporomandibular disorders(TMD)has increased.The temporomandibular joint(TMJ)is a complex structure comprising both soft and hard tissues.Within the TMJ,the temporomandibular disc is a soft tissue structure that connects the mandible to the skull,providing cushioning and stability during joint movement.Different imaging techniques have their own advantages and limi-tations in the diagnosis and treatment of TMD.Therefore,using image registration technology to assess the condition and position of the articular disc provides new research perspectives for evaluating TMD,which may contribute to the diagnosis and treatment.This article reviews the latest advancements in TMJ imaging,explores the applications of various image registration techniques,particularly in the context of TMD diagnosis and treatment,and discusses future prospects.Combining the research results of some scholars at home and a-broad with the author’s clinical experience,the article aims to provide valuable insights for clinicians.
7.A real-world study of the clinical application of the Paris system for reporting urinary cytology in cancer hospital
Huan ZHAO ; Zhihui ZHANG ; Huiqin GUO ; Na WEI ; Haiyue MA ; Linlin ZHAO ; Yue SUN ; Cong WANG ; Xinxiang CHANG ; Xingang BI ; Nianzeng XING
Chinese Journal of Oncology 2024;46(7):703-709
Objectives:To evaluate the clinical value of the Paris system for reporting urinary cytology (TPS) in the diagnosis of urothelial carcinoma (UC).Methods:A total of 1 744 cytological diagnostic records (from 751 cases) were collected retrospectively. All specimens were voided urines and histopathology as the gold standard. The sensitivity and specificity of urinary cytological diagnosis of UC and risk of high grade malignant (ROHM) in each diagnostic category were compared.Results:There were 360 cases with histopathology. The percentage of negative for high-grade urothelial carcinoma (NHGUC) was 30.1% (226/751), atypical urothelial cells (AUC) was 29.8% (224/751), suspicious for high-grade urothelial carcinoma (SHGUC) was 16.8% (126/751), high grade urothelial carcinoma (HGUC) was 21.2% (159/751), and non-urothelial malignancy (NUM) was 2.1% (16/751). The histpathologic ROHM corresponding to each cytological diagnosis category were 27.3% for NHGUC, 32.7% for AUC, 74.7% for SHGUC, 96.6% for HGUC and 100.0% for NUM, respectively. ROHM of SHGUC was significantly higher than that of AUC group, and the difference between the two groups was statistically significant ( P<0.001). ROHM of HGUC group was significantly higher than that of SHGUC group, and the difference was statistically significant ( P<0.001). With SHGUC as the cut-off value, the sensitivity and specificity of cytological diagnosis of HGUC were 76.7% (165/215) and 85.7% (18/21), and with HGUC as the cut-off value, the sensitivity and specificity of cytological diagnosis of HGUC were 53.0% (114/215) and 100.0% (21/21), respectively. Conclusions:Urine cytology has high sensitivity and specificity in the diagnosis of HGUC. The malignant risk of TPS varies with different diagnosis category. The high malignant risk population in cancer hospital leads to the relatively high malignant proportion and ROHM in each diagnosis category. Urinary cytology TPS reporting system is helpful to clinical management and has good clinical application value.
8.Application of 9-gene panel in assisting fine needle aspiration cytology to diagnose thyroid cancer
Yanqi ZHANG ; Huan ZHAO ; Linlin ZHAO ; Yue SUN ; Cong WANG ; Zhihui ZHANG ; Tian QIU ; Xin YANG ; Ting XIAO ; Huiqin GUO
Chinese Journal of Oncology 2024;46(11):1049-1057
Objective:To evaluate the utility of the 9-gene panel as a differential diagnostic method for thyroid nodules within determinate cytological diagnosis and as a parallel diagnostic method for thyroid fine-needle aspiration (FNA) cytology.Methods:579 liquid-based cytology samples from 544 patients were collected after thyroid FNA diagnosis in our hospital from December 2014 to April 2021. Mutations at any site of 9 genes, namely, BRAF, NRAS, HRAS, KRAS, GNAS, RET, TERT, TP53, and PIK3CA as recorded by the Catalogue of Somatic Mutations in Cancer (COSMIC), were analyzed by next-generation sequencing. Taking postoperative histopathology and cytology results with definite benign or malignant diagnosis as the gold standard, the diagnostic efficacy of the 9-gene panel as a reclassified method for thyroid nodules with indeterminate cytological diagnosis and as a parallel diagnostic method for thyroid FNA cytology were evaluated and compared with that of the BRAF V600E single-gene detection method.Results:Of the 579 thyroid nodules, 196 (33.85%) were Bethesda Ⅱ, 11 (1.90%) were Bethesda Ⅲ, 31 (5.35%) were Bethesda Ⅳ, 27 (4.66%) were Bethesda Ⅴ, and 314 (54.23%) were Bethesda Ⅵ, as diagnosed by thyroid FNA cytology. Among these 579 thyroid nodules, 275 were tested positive for 9-gene mutations, with a mutation rate of 47.5%. Of the 329 thyroid nodules surgically removed, 30 (9.12%) were benign, 5 (1.52%) were borderline, and 294 (89.36%) were malignant. Regarding borderline nodules as malignant nodules, the mutation rates of the 9 genes in the 299 malignant thyroid nodules from high to low were BRAF 62.21% (186/299), NRAS 5.02% (15/299), HRAS 1.00% (3/299), PIK3CA 0.67% (2/299), GNAS 0.67% (2/299), KRAS 0.33% (1/299), TP53 0.33% (1/299), TERT 0.33% (1/299) and RET 0.00% (0/299). The malignant risks of the 9 genes from high to low were BRAF 100% (186/186), PIK3CA 100.00% (2/2), GNAS 100.00% (2/2), TERT 100.00% (1/1), TP53 100.00% (1/1), NRAS 78.95% (15/19), HRAS 75.00% (3/4), and KRAS 50.00% (1/2). For thyroid nodules of Bethesda Ⅲ-Ⅳ (indeterminate diagnosis), the sensitivity (SN) of the 9-gene panel in diagnosing thyroid cancer is 34.48% (10/29), the specificity (SP) is 61.54% (8/13), and the accuracy is 42.86% (18/42); whereas the SN of the BRAF V600E detection method is 0%. Therefore, the diagnostic efficiency of the 9-gene panel is significantly better than that of BRAF V600E single gene detection. For thyroid nodules of Bethesda Ⅱ-Ⅵ, the SN of the 9-gene panel in diagnosing thyroid cancer was 68.83% (254/369), the SP was 90.00% (189/210), the accuracy was 76.51% (443/579), and the area under the curve (AUC) was 0.79; whereas the SN of BRAF V600E single-gene detection in diagnosing thyroid cancer was 63.69% (235/369), the SP was 99.52% (209/210), the accuracy was 76.68% (444/579), and the AUC was 0.82. The SP of BRAF V600E detection is higher than that of the 9-gene panel ( P<0.01), but there is no significant difference in SN, accuracy (both P>0.05), and AUC ( Z=0.85, P=0.396) between them. Gene mutations indicating poor prognosis were detected in 4 nodules of papillary thyroid carcinoma and 1 nodules of follicular thyroid carcinoma, including 2 nodules with TERT and BRAF V600E co-mutations, 1 nodule with TP53 mutation, and 2 nodules with PIK3CA mutation. Conclusions:As a reclassified method for thyroid lesions with indeterminate cytological diagnosis, the 9-gene panel is better than BRAF V600E single gene detection. As a parallel diagnostic method of thyroid FNA cytology, the 9-gene panel has similar diagnostic efficacy as BRAF V600E single-gene detection. The 9-gene panel can detect individual cases with gene mutations indicating poor prognosis. The identification of patients with these special gene mutations has certain implications for the clinical management of them.
9.A real-world study of the clinical application of the Paris system for reporting urinary cytology in cancer hospital
Huan ZHAO ; Zhihui ZHANG ; Huiqin GUO ; Na WEI ; Haiyue MA ; Linlin ZHAO ; Yue SUN ; Cong WANG ; Xinxiang CHANG ; Xingang BI ; Nianzeng XING
Chinese Journal of Oncology 2024;46(7):703-709
Objectives:To evaluate the clinical value of the Paris system for reporting urinary cytology (TPS) in the diagnosis of urothelial carcinoma (UC).Methods:A total of 1 744 cytological diagnostic records (from 751 cases) were collected retrospectively. All specimens were voided urines and histopathology as the gold standard. The sensitivity and specificity of urinary cytological diagnosis of UC and risk of high grade malignant (ROHM) in each diagnostic category were compared.Results:There were 360 cases with histopathology. The percentage of negative for high-grade urothelial carcinoma (NHGUC) was 30.1% (226/751), atypical urothelial cells (AUC) was 29.8% (224/751), suspicious for high-grade urothelial carcinoma (SHGUC) was 16.8% (126/751), high grade urothelial carcinoma (HGUC) was 21.2% (159/751), and non-urothelial malignancy (NUM) was 2.1% (16/751). The histpathologic ROHM corresponding to each cytological diagnosis category were 27.3% for NHGUC, 32.7% for AUC, 74.7% for SHGUC, 96.6% for HGUC and 100.0% for NUM, respectively. ROHM of SHGUC was significantly higher than that of AUC group, and the difference between the two groups was statistically significant ( P<0.001). ROHM of HGUC group was significantly higher than that of SHGUC group, and the difference was statistically significant ( P<0.001). With SHGUC as the cut-off value, the sensitivity and specificity of cytological diagnosis of HGUC were 76.7% (165/215) and 85.7% (18/21), and with HGUC as the cut-off value, the sensitivity and specificity of cytological diagnosis of HGUC were 53.0% (114/215) and 100.0% (21/21), respectively. Conclusions:Urine cytology has high sensitivity and specificity in the diagnosis of HGUC. The malignant risk of TPS varies with different diagnosis category. The high malignant risk population in cancer hospital leads to the relatively high malignant proportion and ROHM in each diagnosis category. Urinary cytology TPS reporting system is helpful to clinical management and has good clinical application value.
10.Application of 9-gene panel in assisting fine needle aspiration cytology to diagnose thyroid cancer
Yanqi ZHANG ; Huan ZHAO ; Linlin ZHAO ; Yue SUN ; Cong WANG ; Zhihui ZHANG ; Tian QIU ; Xin YANG ; Ting XIAO ; Huiqin GUO
Chinese Journal of Oncology 2024;46(11):1049-1057
Objective:To evaluate the utility of the 9-gene panel as a differential diagnostic method for thyroid nodules within determinate cytological diagnosis and as a parallel diagnostic method for thyroid fine-needle aspiration (FNA) cytology.Methods:579 liquid-based cytology samples from 544 patients were collected after thyroid FNA diagnosis in our hospital from December 2014 to April 2021. Mutations at any site of 9 genes, namely, BRAF, NRAS, HRAS, KRAS, GNAS, RET, TERT, TP53, and PIK3CA as recorded by the Catalogue of Somatic Mutations in Cancer (COSMIC), were analyzed by next-generation sequencing. Taking postoperative histopathology and cytology results with definite benign or malignant diagnosis as the gold standard, the diagnostic efficacy of the 9-gene panel as a reclassified method for thyroid nodules with indeterminate cytological diagnosis and as a parallel diagnostic method for thyroid FNA cytology were evaluated and compared with that of the BRAF V600E single-gene detection method.Results:Of the 579 thyroid nodules, 196 (33.85%) were Bethesda Ⅱ, 11 (1.90%) were Bethesda Ⅲ, 31 (5.35%) were Bethesda Ⅳ, 27 (4.66%) were Bethesda Ⅴ, and 314 (54.23%) were Bethesda Ⅵ, as diagnosed by thyroid FNA cytology. Among these 579 thyroid nodules, 275 were tested positive for 9-gene mutations, with a mutation rate of 47.5%. Of the 329 thyroid nodules surgically removed, 30 (9.12%) were benign, 5 (1.52%) were borderline, and 294 (89.36%) were malignant. Regarding borderline nodules as malignant nodules, the mutation rates of the 9 genes in the 299 malignant thyroid nodules from high to low were BRAF 62.21% (186/299), NRAS 5.02% (15/299), HRAS 1.00% (3/299), PIK3CA 0.67% (2/299), GNAS 0.67% (2/299), KRAS 0.33% (1/299), TP53 0.33% (1/299), TERT 0.33% (1/299) and RET 0.00% (0/299). The malignant risks of the 9 genes from high to low were BRAF 100% (186/186), PIK3CA 100.00% (2/2), GNAS 100.00% (2/2), TERT 100.00% (1/1), TP53 100.00% (1/1), NRAS 78.95% (15/19), HRAS 75.00% (3/4), and KRAS 50.00% (1/2). For thyroid nodules of Bethesda Ⅲ-Ⅳ (indeterminate diagnosis), the sensitivity (SN) of the 9-gene panel in diagnosing thyroid cancer is 34.48% (10/29), the specificity (SP) is 61.54% (8/13), and the accuracy is 42.86% (18/42); whereas the SN of the BRAF V600E detection method is 0%. Therefore, the diagnostic efficiency of the 9-gene panel is significantly better than that of BRAF V600E single gene detection. For thyroid nodules of Bethesda Ⅱ-Ⅵ, the SN of the 9-gene panel in diagnosing thyroid cancer was 68.83% (254/369), the SP was 90.00% (189/210), the accuracy was 76.51% (443/579), and the area under the curve (AUC) was 0.79; whereas the SN of BRAF V600E single-gene detection in diagnosing thyroid cancer was 63.69% (235/369), the SP was 99.52% (209/210), the accuracy was 76.68% (444/579), and the AUC was 0.82. The SP of BRAF V600E detection is higher than that of the 9-gene panel ( P<0.01), but there is no significant difference in SN, accuracy (both P>0.05), and AUC ( Z=0.85, P=0.396) between them. Gene mutations indicating poor prognosis were detected in 4 nodules of papillary thyroid carcinoma and 1 nodules of follicular thyroid carcinoma, including 2 nodules with TERT and BRAF V600E co-mutations, 1 nodule with TP53 mutation, and 2 nodules with PIK3CA mutation. Conclusions:As a reclassified method for thyroid lesions with indeterminate cytological diagnosis, the 9-gene panel is better than BRAF V600E single gene detection. As a parallel diagnostic method of thyroid FNA cytology, the 9-gene panel has similar diagnostic efficacy as BRAF V600E single-gene detection. The 9-gene panel can detect individual cases with gene mutations indicating poor prognosis. The identification of patients with these special gene mutations has certain implications for the clinical management of them.

Result Analysis
Print
Save
E-mail