1.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
2.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
3.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
4.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
5.Dissecting Causal Relationships Between Gut Microbiota, 1400 Blood Metabolites, and Intervertebral Disc Degeneration
Yuxi LIU ; Daxiong FENG ; Hong ZHANG ; Likun WANG
Neurospine 2025;22(1):211-221
Objective:
The precise mechanisms driving intervertebral disc degeneration (IVDD) development remain unclear, but evidence suggests a significant involvement of gut microbiota (GM) and blood metabolites. We aimed to investigate the causal relationships between GM, IVDD, and blood metabolites using Mendelian randomization (MR) analysis.
Methods:
We utilized the summary statistics of GM from the MiBioGen consortium, 1400 blood metabolites from the genome-wide association studies (GWAS) Catalog, and IVDD data from the FinnGen repository, which are sourced from the largest GWAS conducted to date. Employing bidirectional MR analyses, we investigated the causal relationships between GM and IVDD. Additionally, we conducted 2 mediation analyses, 2-step MR and multivariable MR (MVMR), to identify potential mediating metabolites.
Results:
Five bacterial genera were causally associated with IVDD, while IVDD did not show a significant causal effect on GM. In the 2-step MR analysis, Eubacteriumfissicatenagroup, RuminococcaceaeUCG003, Lachnoclostridium, and Marvinbryantia genera, along with metabolites X-24949, Pimeloylcarnitine/3-methyladipoylcarnitine (C7-DC), X-24456, histidine, 2-methylserine, Phosphocholine, and N-delta-acetylornithine, were all significantly associated with IVDD (all p < 0.05). MVMR analysis revealed that the associations between Eubacteriumfissicatenagroup genus and IVDD were mediated by X-24949 (8.1%, p = 0.024); Lachnoclostridium genus and IVDD were mediated by histidine (18.1%, p = 0.013); and RuminococcaceaeUCG003 genus and IVDD were mediated by C7-DC (-7.5%, p = 0.041).
Conclusion
The present MR study offers evidence supporting the causal relationships between several specific GM taxa and IVDD, as well as identifying potential mediating metabolites.
6.IMM-H007 promotes hepatic cholesterol and triglyceride metabolism by activating AMPKα to attenuate hypercholesterolemia.
Jiaqi LI ; Mingchao WANG ; Kai QU ; Yuyao SUN ; Zequn YIN ; Na DONG ; Xin SUN ; Yitong XU ; Liang CHEN ; Shuang ZHANG ; Xunde XIAN ; Suowen XU ; Likun MA ; Yajun DUAN ; Haibo ZHU
Acta Pharmaceutica Sinica B 2025;15(8):4047-4063
Hypercholesterolemia is a significant risk factor for the development of atherosclerosis. 2',3',5'-Tri-O-acetyl-N 6-(3-hydroxyphenyl) adenosine (IMM-H007), a novel AMPK agonist, has shown protective effects in metabolic diseases. However, its impact on cholesterol and triglyceride metabolism in hypercholesterolemia remains unclear. In this study, we aimed to elucidate the effects and specific mechanisms by which IMM-H007 regulates cholesterol and triglyceride metabolism. To achieve this goal, we used Apoe -/- and Ldlr -/- mice to establish a hypercholesterolemia/atherosclerosis model. Additionally, hepatocyte-specific Ampka1/2 knockout mice were subjected to a 5-week high-cholesterol diet to establish hypercholesterolemia, while atherosclerosis was induced via AAV-PCSK9 injection combined with a 16-week high-cholesterol diet. Our results demonstrated that IMM-H007 improved cholesterol and triglyceride metabolism in mice with hypercholesterolemia. Mechanistically, IMM-H007 modulated the AMPKα1/2-LDLR signaling pathway, increasing cholesterol uptake in the liver. Furthermore, IMM-H007 activated the AMPKα1-FXR pathway, promoting the conversion of hepatic cholesterol to bile acids. Additionally, IMM-H007 prevented hepatic steatosis by activating the AMPKα1/2-ATGL pathway. In conclusion, our study suggests that IMM-H007 is a promising therapeutic agent for improving hypercholesterolemia and atherosclerosis through the activation of AMPKα.
7.4 cases of occupational lung cancer caused by chloromethyl ether and dichloromethyl ether in a chemical enterprise
Likun SONG ; Jiechao WANG ; Qiuju TIAN ; Pan ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(10):772-775
Chloromethyl ether and diclomethyl ether are statutory substances that cause occupational lung cancer. From 2021 to 2022, the Department of Occupational Diseases of the Eighth People's Hospital of Hebei Province successively received 4 cases of lung cancer from a chemical company that required occupational disease diagnosis. All four patients had a clear occupational history of chloromethyl ether and diclomethyl ether for more than 1 year, diagnosis of primary small cell lung cancer supported by relevant histopathology, immunohistochemistry, and tumor markers. All the 4 patients were diagnosed as occupational lung cancer (chloromethyl ether, diclomethyl ether) .
8.Protective effect and mechanism of mesenchymal stem cell derived exosomes against pulmonary oxygen toxicity
Sheng XU ; Likun CUI ; Shu WANG ; Jie CHEN ; Xiaochen BAO ; Yue WANG ; Yunpeng ZHAO
Military Medical Sciences 2024;48(4):267-272
Objective To investigate the role and mechanism of exosomes derived from mesenchymal stem cells in hyperbaric oxygen caused pulmonary oxygen toxicity.Methods Mice were divided into the control group that was exposed to normal air,and hyperbaric oxygen exposure groups treated with phosphate buffer saline(PBS)or exosomes,respectively.PBS and exosome treatment were given one day prior to exposure.Mice were subjected to 0.23 MPa pure oxygen for 8 hours.The lung wet-dry ratio,inflammation,exudation and pathological injury were analyzed,while cell death and antioxidant related molecules were detected.Results Pretreatment with exosome significantly attenuated lung injury caused by hyperbaric oxygen exposure by decreasing the lung wet-dry ratio,inflammation,and cell apoptosis.Conclusion Prophylactic administration of exosomes derived from mesenchymal stem cells can alleviate hyperbaric oxygen induced pulmonary oxygen poisoning by attenuating cell death and inflammation.
9.4 cases of occupational lung cancer caused by chloromethyl ether and dichloromethyl ether in a chemical enterprise
Likun SONG ; Jiechao WANG ; Qiuju TIAN ; Pan ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(10):772-775
Chloromethyl ether and diclomethyl ether are statutory substances that cause occupational lung cancer. From 2021 to 2022, the Department of Occupational Diseases of the Eighth People's Hospital of Hebei Province successively received 4 cases of lung cancer from a chemical company that required occupational disease diagnosis. All four patients had a clear occupational history of chloromethyl ether and diclomethyl ether for more than 1 year, diagnosis of primary small cell lung cancer supported by relevant histopathology, immunohistochemistry, and tumor markers. All the 4 patients were diagnosed as occupational lung cancer (chloromethyl ether, diclomethyl ether) .
10.Correlation between CT Blend Sign and Poor Outcomes after Craniotomy in Patients With Intracerebral Hemorrhage
Li LUO ; Likun WANG ; Jinhua YANG
Journal of Medical Research 2024;53(2):51-55
Objective To explore the effect of head CT blend signs on short-term outcomes in patients with spontaneous supraten-torial intracerebral hemorrhage(ICH)after craniotomy.Methods A total of 435 patients with spontaneous supratentorial ICH who un-derwent craniotomy in the Department of Neurosurgery,Jinyang Hospital Affiliated to Guizhou Medical University from January 2019 to December 2022 were enrolled retrospectively.The patients were divided into the blend sign group(n=105)and control group(n=330)based on the CT features at admission.The general clinical data,imaging data,surgical data,complications and prognosis were collected and compared between the two groups.The outcome was assessed by the mRS(modified Rankin scale)at discharge.Multivariate Logistic regression model was used to analyze the independent correlation between CT blend sign and poor outcomes.Results During the follow-up period,there was no significant differences in the proportion of patients with poor outcomes between the two groups.The poor outcomes after craniotomy was independently correlated with age,smoking history,diabetes history and Glasgow coma scale(GCS)at admission,but not with blend signs.Conclusion Head CT blend signs on admission is not associated with the poor outcomes in patients with sponta-neous supratentorial ICH after craniotomy.

Result Analysis
Print
Save
E-mail