1.Research progress of defocus incorporated multiple segments lenses on the control of myopia
Shiwei SHEN ; Lijun JIANG ; Yongwei ZHU
International Eye Science 2025;25(2):270-273
In recent years, the incidence of myopia has been increasing alongside the growing global population, emerging as a significant public health challenge worldwide. Individuals with myopia exhibit an elongated axial length, which leads to various structural and functional ocular changes, resulting in the risk of related eye diseases and, in severe cases, blindness. Unfortunately, once myopia develops, it is irreversible. The only way to prevent or slow its progression is through appropriate treatment. The current focal point in myopia prevention and control is the peripheral myopic defocus theory. This paper summarizes the relevant research on defocus incorporated multiple segments(DIMS)lenses, following a systematic analysis of the literature. It analyzes the advantages and disadvantages of DIMS compared to other myopia control methods, and discusses the application prospects and future directions of defocus lenses represented by DIMS, aiming to provide reference and guidance for the control of myopia progression in children and adolescents.
2.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
3.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
4.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
5.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
6.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
7.High-dose estrogen impairs demethylation of H3K27me3 by decreasing Kdm6b expression during ovarian hyperstimulation in mice.
Quanmin KANG ; Fang LE ; Xiayuan XU ; Lifang CHEN ; Shi ZHENG ; Lijun LOU ; Nan JIANG ; Ruimin ZHAO ; Yuanyuan ZHOU ; Juan SHEN ; Minhao HU ; Ning WANG ; Qiongxiao HUANG ; Fan JIN
Journal of Zhejiang University. Science. B 2025;26(3):269-285
Given that ovarian stimulation is vital for assisted reproductive technology (ART) and results in elevated serum estrogen levels, exploring the impact of elevated estrogen exposure on oocytes and embryos is necessary. We investigated the effects of various ovarian stimulation treatments on oocyte and embryo morphology and gene expression using a mouse model and estrogen-treated mouse embryonic stem cells (mESCs). Female C57BL/6J mice were subjected to two types of conventional ovarian stimulation and ovarian hyperstimulation; mice treated with only normal saline served as controls. Hyperstimulation resulted in high serum estrogen levels, enlarged ovaries, an increased number of aberrant oocytes, and decreased embryo formation. The messenger RNA (mRNA)-sequencing of oocytes revealed the dysregulated expression of lysine-specific demethylase 6b (Kdm6b), which may be a key factor indicating hyperstimulation-induced aberrant oocytes and embryos. In vitro, Kdm6b expression was downregulated in mESCs treated with high-dose estrogen; treatment with an estrogen receptor antagonist could reverse this downregulated expression level. Furthermore, treatment with high-dose estrogen resulted in the upregulated expression of histone H3 lysine 27 trimethylation (H3K27me3) and phosphorylated H2A histone family member X (γ-H2AX). Notably, knockdown of Kdm6b and high estrogen levels hindered the formation of embryoid bodies, with a concomitant increase in the expression of H3K27me3 and γ-H2AX. Collectively, our findings revealed that hyperstimulation-induced high-dose estrogen could impair the demethylation of H3K27me3 by reducing Kdm6b expression. Accordingly, Kdm6b could be a promising marker for clinically predicting ART outcomes in patients with ovarian hyperstimulation syndrome.
Female
;
Mice
;
Demethylation/drug effects*
;
Embryonic Stem Cells
;
Estrogens/administration & dosage*
;
Gene Expression/drug effects*
;
Histones/metabolism*
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Mice, Inbred C57BL
;
Oocytes
;
Ovary/drug effects*
;
Reproductive Techniques, Assisted
;
Animals
8.Research advance of ischemic optic neuropathy
International Eye Science 2024;24(9):1443-1447
Ischemic optic neuropathy(ION)is a common eye disease that could cause blindness. ION can be classified as anterior ischemic optic neuropathy(AION)or posterior ischemic optic neuropathy(PION)according to the presence or absence of optic disc edema. AION is more prevalent(90%). Moreover, ION can be divided into arteritic ION and non-arteritic ION based on the presence or absence of vasculitis. While various forms of ION may present comparable clinical symptoms, they differ considerably in terms of etiology, prognosis, and treatment approaches.Arteritic ION has the potential to cause blindness, disability, and even mortality in a short period of time. Therefore, early detection of arteritis and determination of the need for corticosteroid therapy are essential for the treatment of ION. The positive significance of identifying and managing potential modifiable risk factors for ION lies in its ability to prevent recurrence in both the affected and contralateral eyes. This article reviews the etiology, risk factors, diagnosis, and management of various varieties of ION with the goal of reducing misdiagnosis and improper treatment, thereby enhancing the overall prognosis of this condition.
9.Progress in molecular diagnosis of mitochondrial disease
Lijun SHEN ; Ya WANG ; Huaibin ZHOU ; Lianting CHEN ; Wen CAI ; Hezhi FANG
International Journal of Laboratory Medicine 2024;45(17):2049-2057
Mitochondrial disease is one of the major types of inherited metabolic disease that can affect all age groups,particularly in children where it has a high mortality and disability rate.With the development of biochemical,molecular,and cellular biology techniques,the laboratory diagnosis of mitochondrial disease has undergone rapid development.The diagnostic pathways and strategies have gradually transitioned from highly invasive laboratory tests to mainly non-invasive screenings.However,the challenge remains that the positive diagnostic rate of single testing strategies is insufficient,and the proportion of missed and pending investiga-tions remains high.Consequently,new mitochondrial disease laboratory diagnostic techniques continue to e-merge and are used to aid in disease diagnosis.This review attempts to summarize the current progress in mi-tochondrial disease laboratory diagnostics at three levels:genetics,enzyme biochemistry,and metabolic biolo-gy,providing references for the selection of laboratory diagnostic strategies in specific scenarios,as well as suggestions for the development of future detection technologies.
10.A randomized controlled study of oral-nasal oxygen supply mouth guard in painless gastroscopy for snoring patients
Yanli NI ; Cheng ZHANG ; Weiying ZHANG ; Xiuzhen GAO ; Yongmei YOU ; Lijun HAN ; Lili MA ; Li SHEN ; Yinghua ZHU ; Xi TAN ; Yulong YANG ; Meidong XU
Chinese Journal of Digestive Endoscopy 2024;41(9):718-722
Objective:To evaluate the effectiveness of oral-nasal oxygen supply mouth guard in painless gastroscopy for snoring patients.Methods:The snoring patients who underwent painless gastroscopy at two Endoscopy Centers of Shanghai East Hospital, Tongji University in July 2022 were randomly divided into the observation group (using oral-nasal oxygen supply mouth guard) and the control group (using ordinary nasal oxygen tube and mouth guard). Parameters such as the wearing time and the removal time of the mouth guard, lowest pulse oxygen saturation (SpO 2), incidence of hypoxemia, and the satisfaction of medical staff were compared between the two groups. Results:The wearing time of mouth guard was 11.63±0.84 seconds and the removal time was 5.33±0.76 seconds in the observation group ( n=40), which were lower than those in the control group ( n=47) (14.91±1.21 seconds, t=-14.463, P<0.001; 10.38±0.80 seconds, t=-30.095, P<0.001). The wearing satisfaction score was 9.80±0.61, the lowest SpO 2 was (96.70±3.42)%, the removal satisfaction score was 9.75±0.67, and the anesthesiologists' satisfaction score was 9.20±1.42 in the observation group, which were higher than those in the control group [7.70±0.93, t=12.209, P<0.001; (94.06±3.72)%, t=3.417, P=0.001; 7.96±0.98, t=9.803, P<0.001; 8.13±1.35, t=3.615, P=0.001] with significant difference. There was no significant difference in the incidence of hypoxemia [10.00% (4/40) VS 14.89% (7/47), χ2=0.130, P=0.718] and endoscopic physician satisfaction score (9.30±0.97 VS 9.02±1.31, t=1.112, P=0.269) between the two groups. Conclusion:The oral-nasal oxygen supply mouth guard is easy to wear and remove, effectively reducing SpO 2 fluctuations during painless gastroscopy for snoring patients. It can enhance medical staff satisfaction with high clinical value.

Result Analysis
Print
Save
E-mail