1.Isoliquiritigenin alleviates abnormal endoplasmic reticulum stress induced by type 2 diabetes mellitus
Kai-yi LAI ; Wen-wen DING ; Jia-yu ZHANG ; Xiao-xue YANG ; Wen-bo GAO ; Yao XIAO ; Ying LIU
Acta Pharmaceutica Sinica 2025;60(1):130-140
Isoliquiritigenin (ISL) is a chalcone compound isolated from licorice, known for its anti-diabetic, anti-cancer, and antioxidant properties. Our previous study has demonstrated that ISL effectively lowers blood glucose levels in type 2 diabetes mellitus (T2DM) mice and improves disturbances in glucolipid and energy metabolism induced by T2DM. This study aims to further investigate the effects of ISL on alleviating abnormal endoplasmic reticulum stress (ERS) caused by T2DM and to elucidate its molecular mechanisms.
2.Development of a balloon sensor device for force-electrical coupling measurement of esophagus.
Peng RAN ; Ying ZHONG ; Yingbing LAI ; Lei LIU ; Yanhang ZHU ; Huantao ZHU
Journal of Biomedical Engineering 2025;42(3):610-619
To address the challenges of capturing micro-strains in detecting esophageal motility disorders and the limitations of existing high-resolution manometry and functional intraluminal imaging probes in directly measuring esophageal tissue electrical impedance, this study proposes a novel flexible balloon sensor structure that integrates a piezoelectric film assembly with a distributed impedance electrode array. Using the electrical analysis module in the finite element analysis (FEA) software, simulations of the forward problem for esophageal impedance detection were conducted to optimize the excitation source parameters, and a physical prototype was fabricated. Under a relative excitation mode with a voltage sensitivity of 2.059%, the voltage output characteristics of the impedance electrode array were analyzed during linear changes in the balloon filling volume. Based on the performance variation of the piezoelectric film assembly, 80% was selected as the optimal filling volume. Force-electric coupling tests were conducted on the balloon sensor using a pressure testing platform, revealing that both the piezoelectric film assembly inside the balloon and the impedance electrodes outside the balloon exhibited significant load differentiation characteristics as the force application point shifted. In summary, this balloon sensor facilitates the localization of force application while simultaneously analyzing esophageal tissue properties, offering a novel diagnostic approach and objective tool for esophageal disease detection.
Esophagus/physiology*
;
Electric Impedance
;
Humans
;
Finite Element Analysis
;
Manometry/methods*
;
Electrodes
;
Esophageal Motility Disorders/physiopathology*
;
Equipment Design
3.Vitexin-4 ″-O-glucoside alleviates acetaminophen-induced acute liver injury.
Fan DONG ; Shanglei LAI ; Jiannan QIU ; Xiaobing DOU
Journal of Zhejiang University. Medical sciences 2025;54(3):307-317
OBJECTIVES:
To explore the protective effect of vitexin-4 ″-O-glucoside (VOG) against acetaminophen-induced acute liver injury in mice and its underlying mechanism.
METHODS:
C57BL/6 mice were randomly divided into 4 groups: normal control group, model control group, low-dose group of VOG (30 mg/kg), and high-dose group of VOG (60 mg/kg). Acute liver injury was induced by intraperitoneal injection of acetaminophen (500 mg/kg). VOG was administrated by gavage 2 h before acetaminophen treatment in VOG groups. The protective effect of VOG against acute liver injury was evaluated by detecting alanine transaminase (ALT), aspartate transaminase (AST) levels and hematoxylin and eosin staining. The malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activity in liver were detected to evaluate the hepatic oxidative stress. The expression levels of tumor necrosis factor (TNF)-α, Il-1β, and Il-6 in liver were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expression levels of phosphorylated c-jun N-terminal kinase (JNK)/JNK, phosphorylated p38/p38, inositol-requiring enzyme 1 alpha (IRE-1α), X-box binding protein 1s (XBP1s), and glucose-regulated protein 78 (GRP78) in liver were detected by Western blotting. An endoplasmic reticulum stress model was established in AML-12 cells using tunicamycin. Cell viability was assessed using the CCK-8 assay, and the degree of cell damage was detected by lactate dehydrogenase (LDH) assay. The gene expression levels of Ire-1α, Xbp1s, and Grp78 in the cells were detected using qRT-PCR.
RESULTS:
In the animal experiments, compared with the model control group, VOG significantly improved plasma ALT and AST levels, liver MDA content, as well as SOD and CAT activities. VOG also reduced the expression levels of Tnf-α, Il-1β, and Il-6 in the liver, and improved protein phosphorylation levels of JNK and p38, as well as the protein expression levels of IRE-1α, XBP1s, and GRP78. In cell experiments, VOG pretreatment enhanced cell viability, reduced LDH release and decreased the mRNA expression of Ire-1α, Xbp1s, and Grp78.
CONCLUSIONS
VOG can suppress inflammation and oxidative stress, and alleviate acetaminophen-induced acute liver injury in mice by suppressing endoplasmic reticulum stress and modulating the MAPK signaling pathway.
Animals
;
Endoplasmic Reticulum Chaperone BiP
;
Mice
;
Acetaminophen/adverse effects*
;
Mice, Inbred C57BL
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Glucosides/therapeutic use*
;
Oxidative Stress/drug effects*
;
Male
;
Apigenin/therapeutic use*
;
Liver/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Endoplasmic Reticulum Stress/drug effects*
;
X-Box Binding Protein 1
;
Endoribonucleases/metabolism*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Protein Serine-Threonine Kinases
4.Erratum: Author correction to "PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism" Acta Pharm Sin B 13 (2023) 157-173.
Mingming SUN ; Leilei LI ; Yujia NIU ; Yingzhi WANG ; Qi YAN ; Fei XIE ; Yaya QIAO ; Jiaqi SONG ; Huanran SUN ; Zhen LI ; Sizhen LAI ; Hongkai CHANG ; Han ZHANG ; Jiyan WANG ; Chenxin YANG ; Huifang ZHAO ; Junzhen TAN ; Yanping LI ; Shuangping LIU ; Bin LU ; Min LIU ; Guangyao KONG ; Yujun ZHAO ; Chunze ZHANG ; Shu-Hai LIN ; Cheng LUO ; Shuai ZHANG ; Changliang SHAN
Acta Pharmaceutica Sinica B 2025;15(4):2297-2299
[This corrects the article DOI: 10.1016/j.apsb.2022.05.019.].
5.A new alkaloid from Huperzia serrata and its biological activity
Xiao-ting QIAO ; Xin-xin CHENG ; Dan WANG ; Mei-han LAI ; Jia-qi WANG ; Xiao-min WANG ; Cai-lian RUAN ; Duo CAO
Acta Pharmaceutica Sinica 2024;59(12):3342-3346
The methanol extract of
6.Association between ADCY3 gene polymorphism and the effects of high-intensity interval training on body composition.
Jun-Ren LAI ; Li GONG ; Yan LIU ; Yan-Chun LI ; Jing NIE ; Duo-Qi ZHOU
Acta Physiologica Sinica 2024;76(6):970-978
This study aimed to analyze the impact of single nucleotide polymorphism (SNP) of ADCY3 (encoding adenylate cyclase 3) on the outcome of high-intensity interval training (HIIT) on body composition and screen genetic markers sensitive to HIIT in Chinese Han youth. A total of 237 non-regular exercise Han college students were recruited in a 12-week HIIT program, attending sessions 3 times a week. Before and after the HIIT program, their body composition was measured. DNA from the white blood cells was extracted and genotyped. PLINK (V1.09) software was used for quality control screening of SNPs loci, and a linear regression model was constructed to analyze the association between ADCY3 gene SNPs loci and body composition. ANOVA multiple comparisons (LSD) were performed to test the difference between groups, with the significance level set at 0.05. The results showed that: 1) A total of 22 SNPs loci were identified by the gene microarray scanning of ADCY3 gene, with 15 of them meeting the quality control criteria. The rs6753096 locus was associated with the training effect of HIIT on body composition; 2) The rs6753096 locus was not associated with pre-HIIT body composition; 3) Compared with volunteers with TT genotype, those with CT/CC genotype exhibited significant decrease in body mass index (BMI) and total body fat after training (P < 0.05); Male volunteers carrying the C allele had more significant training changes in skeletal muscle and lean body weight, while HIIT was more effective in decreasing body fat in female volunteers with CT/CC genotype; 4) The rs6753096 locus was significantly correlated with body fat sensitivity to HIIT (P = 0.0475), indicating that volunteers with CT/CC genotype were more sensitive to HIIT. In conclusion, 12-week HIIT program effectively improved the body composition of college students. The ADCY3 gene rs6753096 locus is not associated with pre-HIIT body composition, but it is associated with body composition sensitivity to HIIT, with individuals carrying CT/CC genotype showing greater responsiveness to HIIT.
Humans
;
Adenylyl Cyclases/genetics*
;
Male
;
Female
;
Body Composition/genetics*
;
Polymorphism, Single Nucleotide
;
Young Adult
;
High-Intensity Interval Training/methods*
;
Genotype
;
Adult
;
Adolescent
7.The Chemokine CCL2 Promotes Excitatory Synaptic Transmission in Hippocampal Neurons via GluA1 Subunit Trafficking.
En JI ; Yuanyuan ZHANG ; Zhiqiang LI ; Lai WEI ; Zhaofa WU ; Yulong LI ; Xiang YU ; Tian-Jia SONG
Neuroscience Bulletin 2024;40(11):1649-1666
The CC chemokine ligand 2 (CCL2, also known as MCP-1) and its cognate receptor CCR2 have well-characterized roles in chemotaxis. CCL2 has been previously shown to promote excitatory synaptic transmission and neuronal excitability. However, the detailed molecular mechanism underlying this process remains largely unclear. In cultured hippocampal neurons, CCL2 application rapidly upregulated surface expression of GluA1, in a CCR2-dependent manner, assayed using SEP-GluA1 live imaging, surface GluA1 antibody staining, and electrophysiology. Using pharmacology and reporter assays, we further showed that CCL2 upregulated surface GluA1 expression primarily via Gαq- and CaMKII-dependent signaling. Consistently, using i.p. injection of lipopolysaccharide to induce neuroinflammation, we found upregulated phosphorylation of S831 and S845 sites on AMPA receptor subunit GluA1 in the hippocampus, an effect blocked in Ccr2-/- mice. Together, these results provide a mechanism through which CCL2, and other secreted molecules that signal through G-protein coupled receptors, can directly regulate synaptic transmission.
Animals
;
Receptors, AMPA/metabolism*
;
Chemokine CCL2/metabolism*
;
Hippocampus/drug effects*
;
Neurons/drug effects*
;
Synaptic Transmission/drug effects*
;
Mice
;
Receptors, CCR2/metabolism*
;
Protein Transport/drug effects*
;
Mice, Inbred C57BL
;
Cells, Cultured
;
Mice, Knockout
;
Excitatory Postsynaptic Potentials/drug effects*
;
Rats
8.Neuroglobin Facilitates Neuronal Oxygenation through Tropic Migration under Hypoxia or Anemia in Rat: How Does the Brain Breathe?
Chun-Yang LI ; Hai-Feng JIANG ; Li LI ; Xiao-Jing LAI ; Qian-Rong LIU ; Shang-Bin YU ; Cheng-La YI ; Xiao-Qian CHEN
Neuroscience Bulletin 2023;39(10):1481-1496
The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.
Rats
;
Animals
;
Neuroglobin/metabolism*
;
Globins/metabolism*
;
Nerve Tissue Proteins/metabolism*
;
Neurons/metabolism*
;
Hypoxia/metabolism*
;
Brain/metabolism*
;
Oxygen
;
Anemia/metabolism*
;
Adenosine Triphosphatases/metabolism*
9.Analysis of success rate of organoid construction of nasopharyngeal carcinoma by first-day suspension method.
Hui Min HUO ; Xi YAO ; Yong Jing LAI ; Wei LU ; Chun Lei LIU ; Zhong Heng HUANG ; Zheng Bo WEI ; Ying XIE
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(3):250-255
Objective: To investigate the efficacy of the first-day suspension method for improving the success rate of construction of nasopharyngeal carcinoma-patient derived organoids (NPC-PDO). Methods: The tumor samples of 14 nasopharyngeal carcinoma(NPC) patients, i.e.,13 males and 1 female, with a mean age of 43.0±12.0 years old, were collected from the Affiliated Tumor Hospital of Guangxi Medical University and the First Affiliated Hospital of Guangxi Medical University from January 2022 to July 2022. The tumor samples of 3 patients were digested into single cell suspension and divided into 2 groups, for comparing the efficacy of NPC-PDO construction by the direct inoculation method and the first-day suspension method. The remaining 11 patients were randomized to receive either the direct inoculation method or the first-day suspension method for NPC-PDO construction. The diameter and the number of spheres of NPC-PDO constructed by the two methods were compared by optical microscope; the 3D cell viability detection kit was used to compare the cell viability; the survival rates were compared by trypan blue staining; the success rates of the two construction methods were compared; the number of cases which could be successfully passaged for more than 5 generations and were consistent with the original tissue by pathological examination was counted; and the dynamic changes of cells in suspension overnight were observed by live cell workstation. The independent sample t-test was applied to compare the measurement data of the two groups, and the chi-square test was used to compare the classification data. Results: Compared with the direct inoculation, the diameter and the number of spheres of NPC-PDO constructed by the first-day suspension method were increased, with a higher cell activity, and the success rate of construction was obviously improved (80.0% vs 16.7%, χ2=4.41, P<0.05). In the suspension state, some of the cells aggregated and increased their ability to proliferate. Conclusion: The first-day suspension method can improve the success rate of NPC-PDO construction, especially for those whose original tumor sample size is small.
Male
;
Humans
;
Female
;
Adult
;
Middle Aged
;
Nasopharyngeal Carcinoma
;
China
;
Microscopy
;
Organoids
;
Nasopharyngeal Neoplasms
10.Bioactive peptides from scorpion venoms: therapeutic scaffolds and pharmacological tools.
Kamau PETER MUIRURI ; Jian ZHONG ; Bing YAO ; Ren LAI ; Lei LUO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(1):19-35
Evolution and natural selection have endowed animal venoms, including scorpion venoms, with a wide range of pharmacological properties. Consequently, scorpions, their venoms, and/or their body parts have been used since time immemorial in traditional medicines, especially in Africa and Asia. With respect to their pharmacological potential, bioactive peptides from scorpion venoms have become an important source of scientific research. With the rapid increase in the characterization of various components from scorpion venoms, a large number of peptides are identified with an aim of combating a myriad of emerging global health problems. Moreover, some scorpion venom-derived peptides have been established as potential scaffolds helpful for drug development. In this review, we summarize the promising scorpion venoms-derived peptides as drug candidates. Accordingly, we highlight the data and knowledge needed for continuous characterization and development of additional natural peptides from scorpion venoms, as potential drugs that can treat related diseases.
Animals
;
Scorpion Venoms/pharmacology*
;
Peptides/pharmacology*
;
Scorpions
;
Drug Development
;
Medicine, Traditional

Result Analysis
Print
Save
E-mail