1.HCV prevalence among nonrenumerated blood donors of different Chinese nationalities
Qifeng SUN ; Liangji WANG ; Yang JI ; Qingkui LIAO ; Julin LI ; Xiaohua HU ; Changyi JIN ; Wanqiao LI ; Al ET
Chinese Journal of Blood Transfusion 2002;0(05):-
Objective To investigate the differences of HCV infection rates among blood donors of different Chinese nationalities.Methods Anti-HCV results from more than 300000 blood donors of 41 nationalities from 8 provinces or autonomous regions were investigated and analyzed.Serum anti-HCV antibody was tested by ELISA.Results(1)The anti-HCV prevalence rate was 0.98%(676/68782) among first time blood donors;0.71%(1750/245137) among repeated donors;and the overall anti-HCV prevalence rate among all the blood donors was 0.77%(2426/313919).The anti-HCV prevalence rate was higher among first time donors,compared to repeated donors(P
2.Application of artificial intelligence in HE risk prediction modelling and research advances
Liangji-Ang HUANG ; Dewen MAO ; Jinghui ZHENG ; Minggang WANG ; Chun YAO
The Journal of Practical Medicine 2024;40(3):289-294
Hepatic encephalopathy is a clinical syndrome of central nervous system dysfunction caused by liver insufficiency.It severely affects the quality of life of patients and may lead to death.Accurate prediction of the risk of developing hepatic encephalopathy is crucial for early intervention and treatment.In order to identify the risk of hepatic encephalopathy in patients in advance,many studies have been devoted to efforts to develop tools and methods to identify the risk of hepatic encephalopathy as early as possible,so as to develop preventive and early management strategies.Most conventional hepatic encephalopathy risk prediction models currently assess the prob-ability of a patient developing hepatic encephalopathy by analysing factors such as clinical data and biochemical indicators,however,their accuracy,sensitivity and positive predictive value are not high.The application of artificial intelligence to clinical predictive modelling is a very hot and promising area,which can use large amounts of data and complex algorithms to improve the accuracy and efficiency of diagnosis and prognosis.To date,there have been few studies using AI techniques to predict hepatic encephalopathy.Therefore,this paper reviews the research progress of hepatic encephalopathy risk prediction models,and also discusses the prospect of AI application in hepatic encephalopathy risk prediction models.It also points out the challenges and future research directions of AI in HE risk prediction model research in order to promote the development and clinical application of hepatic encephalopathy risk prediction models.
3.Mechanism of Wenfei Huaxian Decoction-containing Serum in Delaying Inflammatory Senescence of Lung Mesenchymal Stem Cells Based on NAMPT/SIRT1
Junxia HU ; Yueqi XU ; Jun WANG ; Guoshaung ZHU ; Shiwen KE ; Mingliang QIU ; Liangji LIU ; Lisha MO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):45-53
ObjectiveThe lung mesenchymal stem cells (LMSCs) induced by D-galactose (D-gal) were intervened by Wenfei Huaxian decoction-containing serum to explore the mechanism of Wenfei Huaxian decoction in delaying the senescence of LMSCs through the nicotinamide phosphoribosyltransferase/silent information regulator 1 (NAMPT/SIRT1) signaling pathway. MethodWenfei Huaxian decoction-containing serum was prepared. LMSCs were isolated by gradient density centrifugation, and they were cultured and identified in vitro. The senescence model in vitro was established by stimulating cells via D-gal for 24 h. LMSCs cells were modeled after being treated with different volume fractions (5%, 10%, 20%, 40%, and 80%) of Wenfei Huaxian decoction-containing serum for 24 h, and the cell proliferation level was detected by methyl thiazolyl tetrazolium (MTT) method. The cells were randomly divided into blank serum group, model group, and high, medium, and low dose groups of Wenfei Huaxian decoction-containing serum. Senescence-associated β-galactosidase (SA-β-gal) staining was used to detect the senescence of LMSCs in each group. The content of NAD + was detected by colorimetry. The levels of senescence-associated factors (p16 and p53), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in cell culture supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was used to detect the relative expression of senescence-associated proteins and NAMPT/SIRT1 signaling pathway-related proteins. ResultCompared with the blank serum group, the proliferation of LMSCs was significantly inhibited after D-gal stimulation for 24 h (P<0.01). Compared with the model group, the proliferation of LMSCs could be promoted after intervention with the corresponding Wenfei Huaxian decoction-containing serum (P<0.05, P<0.01). Compared with the blank serum group, the SA-β-gal staining of LMSCs in the model group after D-gal stimulation was enhanced, and the content of NAD+ was increased (P<0.01). The expression levels of senescence factors p16 and p53, as well as SASP pro-inflammatory factors IL-6 and TNF-α in the cell culture supernatant, were significantly increased (P<0.01). The expression of senescence-associated proteins p16, p21, and p53 increased (P<0.01), and the protein expression of NAMPT, SIRT1, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and forkhead box family transcription factor O1 (FoxO1) decreased (P<0.01). Compared with the model group, the SA-β-gal staining of LMSCs in each group of Wenfei Huaxian decoction-containing serum was significantly reduced, and the content of NAD+ was decreased (P<0.01). The senescence factors (p16 and p53) and inflammatory factors (IL-6 and TNF-α) in the cell culture supernatant were significantly decreased (P<0.01). The expression of senescence-associated proteins (P16, P21, and P53) decreased (P<0.05, P<0.01). The protein expressions of NAMPT, SIRT1, PGC-1α, and FoxO1 were significantly up-regulated (P<0.05, P<0.01). ConclusionWenfei Huaxian decoction can alleviate senescence and inflammatory response damage of D-gal-induced LMSCs, and its mechanism may be related to the regulation of the NAMPT/SIRT1 signaling pathway.
4.Pathogenesis of Idiopathic Pulmonary Fibrosis and Modulating Effect of Chinese Medicine: A Review
Enguo ZOU ; Tianyu HUANG ; Mulan WANG ; Chenliang ZHA ; Qin GONG ; Weifeng ZHU ; Yulin FENG ; Liangji LIU ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):280-289
Idiopathic pulmonary fibrosis (IPF), as a progressive lung disease, has a poor prognosis and no reliable and effective therapies. IPF is mainly treated by organ transplantation and administration of chemical drugs, which are ineffective and induce side effects, failing to meet the clinical needs. Therefore, developing safer and more effective drugs has become an urgent task, which necessitates clear understanding of the pathogenesis of IPF. The available studies about the pathogenesis of IPF mainly focus on macrophage polarization, epithelial-mesenchymal transition (EMT), oxidative stress, and autophagy, while few studies systematically explain the principles and links of the pathogeneses. According to the traditional Chinese medicine theory, Qi deficiency and blood stasis and Qi-Yang deficiency are the key pathogeneses of IPF. Therefore, the Chinese medicines or compound prescriptions with the effects of replenishing Qi and activating blood, warming Yang and tonifying Qi, and eliminating stasis and resolving phlegm are often used to treat IPF. Modern pharmacological studies have shown that such medicines play a positive role in inhibiting macrophage polarization, restoring redox balance, inhibiting EMT, and regulating cell autophagy. However, few studies report how Chinese medicines regulate the pathways in the treatment of IPF. By reviewing the latest articles in this field, we elaborate on the pathogenesis of IPF and provide a comprehensive overview of the mechanism of the active ingredients or compound prescriptions of Chinese medicines in regulating IPF. Combining the pathogenesis of IPF with the modulating effects of Chinese medicines, we focus on exploring systemic treatment options for IPF, with a view to providing new ideas for the in-depth study of IPF and the research and development of related drugs.