1.Study on the risk factors and predictive model for acute kidney injury during tacrolimus treatment for pediatric steroid-resistant nephrotic syndrome
Yuqing LIU ; Lei ZHU ; Zhaohuan HAN ; Lei ZHAO
China Pharmacy 2026;37(1):66-71
OBJECTIVE To explore the risk factors for acute kidney injury (AKI) in children with steroid-resistant nephrotic syndrome (SRNS) during tacrolimus treatment and construct a predictive model. METHODS A retrospective selection was made of 155 children diagnosed with SRNS and treated with tacrolimus at Xuzhou Children’s Hospital from January 1, 2022, to December 31, 2023, serving as the study subjects. Various clinical data of the children were collected by reviewing the medical record system. Children who developed AKI during medication were assigned to the AKI group (n=26), and those who did not develop AKI were assigned to the control group (n=129). Univariate and multivariate Logistic regression analyses were used to screen independent risk factors. A clinical predictive model was constructed based on significant variables, and nomogram, calibration curve, receiver operator characteristic curve, and decision curve were drawn to evaluate the model’s performance. RESULTS Univariate analysis showed that blood urea nitrogen (BUN), serum creatinine (Scr), estimated glomerular filtration rate (eGFR), the maximum trough concentration (cmin) of tacrolimus, CYP3A5*3/*3 genotype, concurrent infection, concurrent hypertension, and the use of non-steroidal anti-inflammatory drugs were influencing factors for AKI in children with SRNS during tacrolimus treatment (P<0.05). Multivariate Logistic regression analysis revealed that BUN≥9.58 mmol/L, Scr≥125 μmol/L, eGFR<37 mL/(min·1.73 m2), tacrolimus maximum cmin≥11.26 ng/mL,CYP3A5*3/*3 genotype, concurrent infection, and concurrent hypertension were independent risk factors for AKI in children with SRNS during tacrolimus treatment (P<0.05). The constructed clinical predictive model had an area under the curve of 0.747, showing good agreement between predicted and actual AKI occurrence and demonstrating favorable clinical net benefit in predicting AKI in children. CONCLUSIONS Impaired baseline renal function (elevated BUN, elevated Scr, and decreased eGFR), elevated maximum cmin of tacrolimus, CYP3A5*3/*3 genotype, concurrent infection, and hypertension during treatment are independent risk factors for AKI in children with SRNS during tacrolimus treatment. The established clinical predictive model provides a scientific basis for implementing risk stratification management.
2.Construction and in vitro osteogenic activity study of magnesium-strontium co-doped hydroxyapatite mineralized collagen
WANG Meng ; SUN Yifei ; CAO Xiaoqing ; WEI Yiyuan ; CHEN Lei ; ZHANG Zhenglong ; MU Zhao ; ZHU Juanfang ; NIU Lina
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):15-28
Objective:
To investigate the efficacy of magnesium-strontium co-doped hydroxyapatite mineralized collagen (MSHA/Col) in improving the bone repair microenvironment and enhancing bone regeneration capacity, providing a strategy to address the insufficient biomimetic composition and limited bioactivity of traditional hydroxyapatite mineralized collagen (HA/Col) scaffolds.
Methods:
A high-molecular-weight polyacrylic acid-stabilized amorphous calcium magnesium strontium phosphate precursor (HPAA/ACMSP) was prepared. Its morphology and elemental distribution were characterized by high-resolution transmission electron microscopy (TEM) and energy-dispersive spectroscopy. Recombinant collagen sponge blocks were immersed in the HPAA/ACMSP mineralization solution. Magnesium-strontium co-doped hydroxyapatite was induced to deposit within collagen fibers (experimental group: MSHA/Col; control group: HA/Col). The morphological characteristics of MSHA/Col were observed using scanning electron microscopy (SEM). Its crystal structure and chemical composition were analyzed by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. The mineral phase content was evaluated by thermogravimetric analysis. The scaffold's porosity, ion release, and in vitro degradation performance were also determined. For cytological experiments, CCK-8 assay, live/dead cell staining, alkaline phosphatase staining, alizarin red S staining, RT-qPCR, and western blotting were used to evaluate the effects of the MSHA/Col scaffold on the proliferation, viability, early osteogenic differentiation activity, late mineralization capacity, and gene and protein expression levels of key osteogenic markers [runt-related transcription factor 2 (Runx2), collagen type Ⅰ (Col-Ⅰ), osteopontin (Opn), and osteocalcin (Ocn)] in mouse embryonic osteoblast precursor cells (MC3T3-E1).
Results:
HPAA/ACMSP appeared as amorphous spherical nanoparticles under TEM, with energy spectrum analysis showing uniform distribution of carbon, oxygen, calcium, phosphorus, magnesium, and strontium elements. SEM results of MSHA/Col indicated successful complete intrafibrillar mineralization. Elemental analysis showed the mass fractions of magnesium and strontium were 0.72% (matching the magnesium content in natural bone) and 2.89%, respectively. X-ray diffraction revealed characteristic peaks of hydroxyapatite crystals (25.86°, 31°-34°). Infrared spectroscopy results showed characteristic absorption peaks for both collagen and hydroxyapatite. Thermogravimetric analysis indicated a mineral phase content of 78.29% in the material. The scaffold porosity was 91.6% ± 1.1%, close to the level of natural bone tissue. Ion release curves demonstrated sustained release behavior for both magnesium and strontium ions. The in vitro degradation rate matched the ingrowth rate of new bone tissue. Cytological experiments showed that MSHA/Col significantly promoted MC3T3-E1 cell proliferation (130% increase in activity at 72 h, P < 0.001). MSHA/Col exhibited excellent efficacy in promoting osteogenic differentiation, significantly upregulating the expression of osteogenesis-related genes and proteins (Runx2, Col-Ⅰ, Opn, Ocn) (P < 0.01).
Conclusion
The MSHA/Col scaffold achieves dual biomimicry of natural bone in both composition and structure, and effectively promotes osteogenic differentiation at the genetic and protein levels, breaking through the functional limitations of pure hydroxyapatite mineralized collagen. This provides a new strategy for the development of functional bone repair materials
3.Research progress on the relationship between early life obesogen exposure and childhood obesity
GAO Lei ; YE Zhen ; WANG Wei ; ZHAO Dong ; XU Peiwei ; ZHANG Ronghua
Journal of Preventive Medicine 2026;38(1):48-54
Childhood obesity has become a global public health issue. Current research indicates that early life obesogen exposure has emerged as a significant risk factor for childhood obesity. While obesogens have been confirmed to influence the development and progression of childhood obesity through mechanisms such as endocrine disruption and epigenetic programming, controversies remain regarding the establishment of causal relationships, assessment of combined exposures, and validation of transgenerational effects in humans. In recent years, novel approaches including multi-omics technologies, exposome-based analysis, and multigenerational cohort studies have integrated dynamic biomarker monitoring with analyses of social-environmental interactions, offering new perspectives and methodologies for constructing a systematic "exposure-mechanism-outcome" research framework. This article reviews literature from PubMed and Web of Science up to August 2025 on the association between early life obesogen exposure and childhood obesity, summarizing evidence on the health effects of early life obesogen exposure, major exposure pathways and internal exposure assessment, interactions and amplifying effects of social and environmental factors, as well as the biological mechanisms underlying obesogen action. It further examines current research frontiers and challenges, aiming to provide a theoretical foundation for early prevention and precision intervention of childhood obesity.
4.Huayu Mingmu Prescription Downregulates PI3K/Akt/mTOR-HIF-1α/VEGFA Signaling Pathway to Intervene in Retinal Angiogenesis of DR Rats
Xiaoqiu MA ; Lei ZHAO ; Huimin ZHOU ; Fanghui ZHENG ; Guoqing YANG ; Tao ZUO ; Xiande MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):78-87
ObjectiveTo observe the effect of Huayu Mingmu prescription on retinal angiogenesis and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR)-hypoxia inducible factor-1α/vascular endothelial growth factor A (HIF-1α/VEGFA) signaling pathway in diabetic retinopathy (DR) rats. MethodsSixty-four SPF-grade male SD rats were used in the study. Eleven rats were randomly selected as the normal group, while the remaining 53 rats were fed a high-sugar, high-fat diet combined with low-dose streptozotocin (STZ) intraperitoneal injection to establish a type 2 diabetes mellitus (T2DM) rat model. DR model evaluation was performed after 12 weeks of diabetes. The rats were then divided into model, low-dose, medium-dose, and high-dose groups of Huayu Mingmu prescription (9.29, 18.57, 37.14 g·kg-1), and a calcium dobesilate group (0.16 g·kg-1), with 10 rats in each group. The rats were orally administered the corresponding doses of Huayu Mingmu prescription and calcium dobesilate. The normal and model groups received equal volumes of physiological saline via gavage for 8 consecutive weeks. Retinal vascular changes were observed through fundus photography, and pathological changes in retinal tissue were evaluated using hematoxylin-eosin (HE) staining. Retinal microvascular pathological changes were examined through retinal vascular network preparation and periodic acid-Schiff (PAS) staining. Immunofluorescence (IF) was used to detect the expression of VEGFA and angiopoietin-2 (Ang-2) in retinal tissue. Western blot was employed to detect the protein expression of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to assess the mRNA expression of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue. ResultsCompared with the normal group, the model group exhibited significant pathological changes in retinal tissue, including the appearance of acellular capillaries, as well as significant endothelial cell (E) proliferation and pericyte (P) loss (P<0.01). The E/P was significantly elevated (P<0.01). Protein and mRNA expression levels of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue were significantly increased (P<0.01), and the expression of Ang-2 protein was significantly elevated (P<0.01). In contrast, retinal tissue in the treatment groups showed alleviated pathological changes, with reduced endothelial cell proliferation and pericyte loss (P<0.05, P<0.01). Among the treatment groups, the high-dose Huayu Mingmu prescription and the calcium dobesilate group exhibited a decreased E/P (P<0.01). Protein and mRNA expression levels of PI3K, Akt, mTOR, HIF-1α, VEGFA, and VEGFR2 in retinal tissue were significantly reduced (P<0.05, P<0.01), and the expression of Ang-2 protein was significantly decreased (P<0.01). ConclusionHuayu Mingmu prescription can intervene in retinal neovascularization in DR rats, delay the progression of DR, and its mechanism may be related to antagonizing the PI3K/Akt/mTOR-HIF-1α/VEGFA signaling pathway.
5.Research progress on extrahepatic targeted delivery of mRNA-LNP
Lei LI ; Cai-li ZHAO ; Ning ZHANG ; Chun-lei LI
Acta Pharmaceutica Sinica 2025;60(2):359-368
Messenger ribonucleic acid (mRNA) is a promising therapeutic drug with great potential in the fields of immunology, oncology, vaccines and inborn metabolic diseases. However, due to its instability and susceptibility to nuclease degradation, efficient delivery vectors are required. Lipid nanoparticles (LNPs) are recognized as the most mature delivery vectors due to their advantages of easy formulation, high stability, efficient cell uptake and endosomal escape. However, the accumulation of LNPs in the liver severely limits the targeting and treatment of mRNA-LNP technology beyond the liver. To overcome this obstacle, researchers have been focusing on various means to achieve precise delivery of extrahepatic tissues and organs. This article mainly expounds the research progress of LNP-specific delivery mRNA from three aspects: endogenous targeting, active targeting and selection of administration route, in order to provide ideas and directions for the design of new mRNA-LNP delivery systems in the future.
6.Clinical Prediction Models Based on Traditional Methods and Machine Learning for Predicting First Stroke: Status and Prospects
Zijiao ZHANG ; Shunjing DING ; Di ZHAO ; Jun LIANG ; Jianbo LEI
Medical Journal of Peking Union Medical College Hospital 2025;16(2):292-299
Stroke ranks as the third leading cause of death and the fourth leading cause of disability worldwide. Its high disability rate and prolonged recovery period not only severely impact patients' quality of life but also impose a significant burden on families and society. Primary prevention is the cornerstone of stroke control, as early intervention on risk factors can effectively reduce its incidence. Therefore, the development of predictive models for first-ever stroke risk holds substantial clinical value. In recent years, advancements in big data and artificial intelligence technologies have opened new avenues for stroke risk prediction. This article reviews the current research status of traditional methods and machine learning models in predicting first-ever stroke risk and outlines future development trends from three perspectives: First, emphasis should be placed on technological innovation by incorporating advanced algorithms such as deep learning and large models to further enhance the accuracy of predictive models. Second, there is a need to diversify data types and optimize model architectures to construct more comprehensive and precise predictive models. Lastly, particular attention should be given to the clinical validation of models in real-world settings. This not only enhances the robustness and generalizability of the models but also promotes physicians' understanding of predictive models, which is crucial for their application and dissemination.
7.Clinical and contrast-enhanced ultrasonographic characteristics of peripheral lung masses in patients infected with human immunodeficiency virus
Lei ZHAO ; Jingjing HUANG ; Xin MA ; Xia SHI ; Dou WU ; Zhi ZHANG ; Fengxiang SONG ; Jianjian LIU
Chinese Journal of Clinical Medicine 2025;32(2):276-282
Objective To evaluate the clinical characteristics of human immunodeficiency virus (HIV) infected patients with peripheral lung masses (PLMs), and to assess the diagnostic utility of contrast-enhanced ultrasound (CEUS) in differentiating benign and malignant PLMs. Methods A retrospective analysis was performed on the clinical data of 69 patients with PLM treated in Shanghai Public Health Clinical Center from January 2020 to December 2023. All patients underwent percutaneous biopsy, and were categorized into benign group (n=36) and malignant group (n=33). 25 patients were HIV-positive and 44 patients were HIV-negative. The clinical features and CEUS parameters in patients were compared across these groups. Results Patients with malignant masses were significantly older than those with benign masses (P<0.05). In the malignant group, HIV-negative patients exhibited significantly larger tumor diameters compared to HIV-positive patients (P<0.05); in the HIV-positive patients, no significant difference in tumor size was observed between benign and malignant masses. 19 patients underwent CEUS. 10 malignant masses, irrespective of HIV status (10 positive and 9 negative), commonly presented with indistinct margins, delayed enhancement, heterogeneous perfusion, and delayed peak enhancement on CEUS. 9 benign masses showed earlier peak enhancement compared to 10 malignant masses (P<0.05); no significant differences were observed in the initiation and washout time of enhancement between benign and malignant masses. In HIV-positive patients, 5 benign masses frequently demonstrated discrepancies between CEUS findings and pathological results. Conclusions The clinical and CEUS characteristics were different between benign and malignant PLMs. However, CEUS shows limited accuracy in distinguishing benign and malignant PLMs, underscoring the need for pathological confirmation.
8.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
9.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
10.History, Experience, Opportunities, and Challenges in Esophageal Cancer Prevention and Treatment in Linxian, Henan Province, A High Incidence Area for Esophageal Cancer
Lidong WANG ; Xiaoqian ZHANG ; Xin SONG ; Xueke ZHAO ; Duo YOU ; Lingling LEI ; Ruihua XU ; Jin HUANG ; Wenli HAN ; Ran WANG ; Qide BAO ; Aifang JI ; Lei MA ; Shegan GAO
Cancer Research on Prevention and Treatment 2025;52(4):251-255
Linxian County in Henan Province, Northern China is known as the region with the highest incidence and mortality rate of esophageal cancer worldwide. Since 1959, the Henan medical team has conducted field work on esophageal cancer prevention and treatment in Linxian. Through three generations of effort exerted by oncologists over 65 years of research on esophageal cancer prevention and treatment in Linxian, the incidence rate of esophageal squamous cell carcinoma in this area has dropped by nearly 50%, and the 5-year survival rate has increased to 40%, reaching the international leading


Result Analysis
Print
Save
E-mail