1.Mitochondial-located miRNAs in The Regulation of mtDNA Expression
Peng-Xiao WANG ; Le-Rong CHEN ; Zhen WANG ; Jian-Gang LONG ; Yun-Hua PENG
Progress in Biochemistry and Biophysics 2025;52(7):1649-1660
Mitochondria, functioning not only as the central hub of cellular energy metabolism but also as semi-autonomous organelles, orchestrate cellular fate decisions through their endogenous mitochondrial DNA (mtDNA), which encodes core components of the electron transport chain. Emerging research has identified microRNAs localized within mitochondria, termed mitochondria-located microRNAs (mitomiRs). Recent studies have revealed that mitomiRs are transcribed from nuclear DNA (nDNA), processed and matured in the cytoplasm, and subsequently transported into mitochondria. mitomiRs regulate mtDNA through diverse mechanisms, including modulation of mtDNA expression at the translational level and direct binding to mtDNA to influence transcription. Aberrant expression of mitomiRs leads to mitochondrial dysfunction and contributes to the pathogenesis of metabolic diseases. Restoring mitomiR expression to physiological levels using mitomiRs mimics or inhibitors has been shown to improve mitochondrial function and alleviate related diseases. Consequently, the regulatory mechanisms of mitomiRs have become a major focus in mitochondrial research. Given that mitomiRs are located in mitochondria, targeted delivery strategies designed for mtDNA can be adapted for the delivery of mitomiRs mimics or inhibitors. However, numerous intracellular and extracellular barriers remain, highlighting the need for more precise and efficient delivery systems in the future. The regulation of mtDNA expression mediated by mitomiRs not only expands our understanding of miRNA functions in post-transcriptional gene regulation but also provides promising molecular targets for the treatment of mitochondrial-related diseases. This review systematically summarizes recent research progress on mitomiRs in regulating mtDNA expression and discusses the underlying mechanisms of mitomiRs-mtDNA interactions. Additionally, it provides new perspectives on precision therapeutic strategies, with a particular emphasis on mitomiRs-based regulation of mitochondrial function in mitochondrial-related diseases.
2.Correlation between serum homocysteine, folic acid and sperm DNA fragmentation index
LE Yun ; ZHU Yurong ; ZHU Mengyi ; WANG Tengfei ; SHAO Shengsheng ; CHEN Xiaojun ; YANG Sheng
Journal of Preventive Medicine 2025;37(4):400-403
Objective:
To analyze the correlation between serum homocysteine (Hcy) and both folic acid (FA) and sperm DNA fragmentation index (DFI), so as to provide the evidence for male fertility assessment.
Methods:
Males who visited and measured the serum Hcy in the Reproductive Medicine Center of Huzhou Maternal and Child Health Care Hospital from September 2022 to September 2023 were selected as the study subjects. Sperm quality parameters and sperm DFI were analyzed by collecting sperm. Hcy and FA were measured by collecting venous blood. Participants were stratified into a high Hcy group (Hcy≥15.0 μmol/L) and a normal group (Hcy<15.0 μmol/L). The correlations between serum Hcy and FA and sperm DFI were evaluated using linear regression models.
Results:
A total of 173 participants were enrolled, including 39 in the high Hcy group and 134 in the normal group. The sperm concentration in the high Hcy group was significantly lower than that in the normal group [(91.77±61.11)×106/mL vs. (144.21±106.82)×106/mL, P<0.05]. No statistically significant differences were observed in semen volume, sperm motility, curvilinear velocity, straight-line velocity, average path velocity, or sperm morphology normal rate (all P>0.05). The FA level in the high Hcy group was lower than that in the normal group [(4.44±1.79) nmol/L vs. (7.64±3.68) nmol/L, P<0.05]. The sperm DFI in the high Hcy group was higher than that in the normal group [(19.21±8.85)% vs. (13.07±6.43)%, P<0.05]. Serum Hcy level showed a negative correlation with FA level (r=-0.369, P<0.05) and a positive correlation with sperm DFI (r=0.351, P<0.05).
Conclusion
Serum Hcy level is associated with sperm concentration, FA and sperm DFI, suggesting that serum Hcy may affect sperm quality.
3.ATF3 regulates inflammatory response in atherosclerotic plaques in mice through the NF-κB signaling pathway.
Bing XIA ; Jin PENG ; Jiuyang DING ; Jie WANG ; Guowei TANG ; Guojie LIU ; Yun WANG ; Changwu WAN ; Cuiyun LE
Journal of Southern Medical University 2025;45(6):1131-1142
OBJECTIVES:
To investigate the role of activating transcription factor 3 (ATF3) in atherosclerotic plaques for regulating inflammatory responses during atherosclerosis (AS) progression.
METHODS:
Human coronary artery specimens from autopsy cases were examined for ATF3 protein expression and localization using immunofluorescence staining and Western blotting. Apolipoprotein E-deficient (ApoE-/-) mouse models of AS induced by high-fat diet (HFD) feeding for 12 weeks were subjected to tail vein injection of adeno-associated virus serotype 9 (AAV9) to knock down ATF3 expression. After an additional 5 weeks of HFD feeding, the mice were euthanized for analyzing structural changes of the aortic plaques, and the expression levels of ATF3, inflammatory factors (CD45, CD68, IL-1β, and TNF-α), and NF-κB pathway proteins (P-IKKα/β and P-NF-κB p65) were detected. In the cell experiment, THP-1-derived foam cells were transfected with an ATF3-overexpressing plasmid or an ATF3-specific siRNA to validate the relationship between ATF3 and NF‑κB signaling.
RESULTS:
In human atherosclerotic plaques, ATF3 expression was significantly elevated and partially co-localized with CD68. ATF3 knockout in ApoE-/- mice significantly increased aortic plaque volume, upregulated the inflammatory factors, enhanced phosphorylation of the NF‑κB pathway proteins, and increased the expressions of VCAM1, MMP9, and MMP2 in the plaques. In THP-1-derived foam cells, ATF3 silencing caused activation of the NF‑κB pathway, while ATF3 overexpression suppressed the activity of the NF-κB pathway.
CONCLUSIONS
AS promotes ATF3 expression, and ATF3 deficiency exacerbates AS progression by enhancing plaque inflammation via activating the NF-κB pathway, suggesting the potential of ATF3 as a therapeutic target for AS.
Animals
;
Activating Transcription Factor 3/metabolism*
;
Signal Transduction
;
NF-kappa B/metabolism*
;
Humans
;
Mice
;
Plaque, Atherosclerotic/metabolism*
;
Inflammation/metabolism*
;
Apolipoproteins E
;
Atherosclerosis/metabolism*
;
Diet, High-Fat
4.KG-CNNDTI: a knowledge graph-enhanced prediction model for drug-target interactions and application in virtual screening of natural products against Alzheimer's disease.
Chengyuan YUE ; Baiyu CHEN ; Long CHEN ; Le XIONG ; Changda GONG ; Ze WANG ; Guixia LIU ; Weihua LI ; Rui WANG ; Yun TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1283-1292
Accurate prediction of drug-target interactions (DTIs) plays a pivotal role in drug discovery, facilitating optimization of lead compounds, drug repurposing and elucidation of drug side effects. However, traditional DTI prediction methods are often limited by incomplete biological data and insufficient representation of protein features. In this study, we proposed KG-CNNDTI, a novel knowledge graph-enhanced framework for DTI prediction, which integrates heterogeneous biological information to improve model generalizability and predictive performance. The proposed model utilized protein embeddings derived from a biomedical knowledge graph via the Node2Vec algorithm, which were further enriched with contextualized sequence representations obtained from ProteinBERT. For compound representation, multiple molecular fingerprint schemes alongside the Uni-Mol pre-trained model were evaluated. The fused representations served as inputs to both classical machine learning models and a convolutional neural network-based predictor. Experimental evaluations across benchmark datasets demonstrated that KG-CNNDTI achieved superior performance compared to state-of-the-art methods, particularly in terms of Precision, Recall, F1-Score and area under the precision-recall curve (AUPR). Ablation analysis highlighted the substantial contribution of knowledge graph-derived features. Moreover, KG-CNNDTI was employed for virtual screening of natural products against Alzheimer's disease, resulting in 40 candidate compounds. 5 were supported by literature evidence, among which 3 were further validated in vitro assays.
Alzheimer Disease/drug therapy*
;
Biological Products/therapeutic use*
;
Humans
;
Neural Networks, Computer
;
Machine Learning
;
Drug Discovery/methods*
;
Algorithms
;
Drug Evaluation, Preclinical/methods*
6.Protective mechanism of rhubarb decoction against inflammatory damage of brain tissue in rats with mild hepatic encephalopathy: A study based on the PI3K/AKT/mTOR signaling pathway
Guangfa ZHANG ; Yingying CAI ; Long LIN ; Lei FU ; Fan YAO ; Meng WANG ; Rongzhen ZHANG ; Yueqiao CHEN ; Liangjiang HUANG ; Han WANG ; Yun SU ; Yanmei LAN ; Yingyu LE ; Dewen MAO ; Chun YAO
Journal of Clinical Hepatology 2024;40(2):312-318
ObjectiveTo investigate the role and possible mechanism of action of rhubarb decoction (RD) retention enema in improving inflammatory damage of brain tissue in a rat model of mild hepatic encephalopathy (MHE). MethodsA total of 60 male Sprague-Dawley rats were divided into blank group (CON group with 6 rats) and chronic liver cirrhosis modeling group with 54 rats using the complete randomization method. After 12 weeks, 40 rats with successful modeling which were confirmed to meet the requirements for MHE model by the Morris water maze test were randomly divided into model group (MOD group), lactulose group (LT group), low-dose RD group (RD1 group), middle-dose RD group (RD2 group), and high-dose RD group (RD3 group), with 8 rats in each group. The rats in the CON group and the MOD group were given retention enema with 2 mL of normal saline once a day; the rats in the LT group were given retention enema with 2 mL of lactulose at a dose of 22.5% once a day; the rats in the RD1, RD2, and RD3 groups were given retention enema with 2 mL RD at a dose of 2.5, 5.0, and 7.5 g/kg, respectively, once a day. After 10 days of treatment, the Morris water maze test was performed to analyze the spatial learning and memory abilities of rats. The rats were analyzed from the following aspects: behavioral status; the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and the level of blood ammonia; pathological changes of liver tissue and brain tissue; the mRNA and protein expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) in brain tissue. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the MOD group, the RD1, RD2, and RD3 groups had a significantly shorter escape latency (all P<0.01), significant reductions in the levels of ALT, AST, IL-1β, IL-6, TNF-α, and blood ammonia (all P<0.05), significant alleviation of the degeneration, necrosis, and inflammation of hepatocytes and brain cells, and significant reductions in the mRNA and protein expression levels of PI3K, AKT, and mTOR in brain tissue (all P<0.05), and the RD3 group had a better treatment outcome than the RD1 and RD2 groups. ConclusionRetention enema with RD can improve cognitive function and inflammatory damage of brain tissue in MHE rats, possibly by regulating the PI3K/AKT/mTOR signaling pathway.
7.Long-term hypomethylating agents in patients with myelodysplastic syndromes: a multi-center retrospective study
Xiaozhen LIU ; Shujuan ZHOU ; Jian HUANG ; Caifang ZHAO ; Lingxu JIANG ; Yudi ZHANG ; Chen MEI ; Liya MA ; Xinping ZHOU ; Yanping SHAO ; Gongqiang WU ; Xibin XIAO ; Rongxin YAO ; Xiaohong DU ; Tonglin HU ; Shenxian QIAN ; Yuan LI ; Xuefen YAN ; Li HUANG ; Manling WANG ; Jiaping FU ; Lihong SHOU ; Wenhua JIANG ; Weimei JIN ; Linjie LI ; Jing LE ; Wenji LUO ; Yun ZHANG ; Xiujie ZHOU ; Hao ZHANG ; Xianghua LANG ; Mei ZHOU ; Jie JIN ; Huifang JIANG ; Jin ZHANG ; Guifang OUYANG ; Hongyan TONG
Chinese Journal of Hematology 2024;45(8):738-747
Objective:To evaluate the efficacy and safety of hypomethylating agents (HMA) in patients with myelodysplastic syndromes (MDS) .Methods:A total of 409 MDS patients from 45 hospitals in Zhejiang province who received at least four consecutive cycles of HMA monotherapy as initial therapy were enrolled to evaluate the efficacy and safety of HMA. Mann-Whitney U or Chi-square tests were used to compare the differences in the clinical data. Logistic regression and Cox regression were used to analyze the factors affecting efficacy and survival. Kaplan-Meier was used for survival analysis. Results:Patients received HMA treatment for a median of 6 cycles (range, 4-25 cycles) . The complete remission (CR) rate was 33.98% and the overall response rate (ORR) was 77.02%. Multivariate analysis revealed that complex karyotype ( P=0.02, OR=0.39, 95% CI 0.18-0.84) was an independent favorable factor for CR rate. TP53 mutation ( P=0.02, OR=0.22, 95% CI 0.06-0.77) was a predictive factor for a higher ORR. The median OS for the HMA-treated patients was 25.67 (95% CI 21.14-30.19) months. HMA response ( P=0.036, HR=0.47, 95% CI 0.23-0.95) was an independent favorable prognostic factor, whereas complex karyotype ( P=0.024, HR=2.14, 95% CI 1.10-4.15) , leukemia transformation ( P<0.001, HR=2.839, 95% CI 1.64-4.92) , and TP53 mutation ( P=0.012, HR=2.19, 95% CI 1.19-4.07) were independent adverse prognostic factors. There was no significant difference in efficacy and survival between the reduced and standard doses of HMA. The CR rate and ORR of MDS patients treated with decitabine and azacitidine were not significantly different. The median OS of patients treated with decitabine was longer compared with that of patients treated with azacitidine (29.53 months vs 20.17 months, P=0.007) . The incidence of bone marrow suppression and pneumonia in the decitabine group was higher compared with that in the azacitidine group. Conclusion:Continuous and regular use of appropriate doses of hypomethylating agents may benefit MDS patients to the greatest extent if it is tolerated.
8.Pathological Characteristics and Classification of Unstable Coronary Atheroscle-rotic Plaques
Yun-Hong XING ; Yang LI ; Wen-Zheng WANG ; Liang-Liang WANG ; Le-Le SUN ; Qiu-Xiang DU ; Jie CAO ; Guang-Long HE ; Jun-Hong SUN
Journal of Forensic Medicine 2024;40(1):59-63
Important forensic diagnostic indicators of sudden death in coronary atherosclerotic heart dis-ease,such as acute or chronic myocardial ischemic changes,sometimes make it difficult to locate the ischemic site due to the short death process,the lack of tissue reaction time.In some cases,the de-ceased died of sudden death on the first-episode,resulting in difficulty for medical examiners to make an accurate diagnosis.However,clinical studies on coronary instability plaque revealed the key role of coronary spasm and thrombosis caused by their lesions in sudden coronary death process.This paper mainly summarizes the pathological characteristics of unstable coronary plaque based on clinical medi-cal research,including plaque rupture,plaque erosion and calcified nodules,as well as the influencing factors leading to plaque instability,and briefly describes the research progress and technique of the atherosclerotic plaques,in order to improve the study on the mechanism of sudden coronary death and improve the accuracy of the forensic diagnosis of sudden coronary death by diagnosing different patho-logic states of coronary atherosclerotic plaques.
10.Anti-inflammatory material basis and mechanism of Artemisia stolonifera based on UPLC-Q-TOF-MS combined with network pharmacology and molecular docking.
Le CHEN ; Yun-Yun ZHU ; Li-Ping KANG ; Chao-Wei GUO ; Yu-Qiao WANG ; Shuang-Ge LI ; Hong-Zhi DU ; Da-Hui LIU
China Journal of Chinese Materia Medica 2023;48(14):3701-3714
This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.
Antioxidants/chemistry*
;
Molecular Docking Simulation
;
Artemisia
;
Network Pharmacology
;
Phosphatidylinositol 3-Kinases
;
Anti-Inflammatory Agents/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Interleukin-6


Result Analysis
Print
Save
E-mail