1.The Current Status of Research on The Association Between TMEM43 Gene and Hearing Loss
Progress in Biochemistry and Biophysics 2025;52(2):269-278
Transmembrane proteins (TMEM) are a type of membrane protein. Most proteins in this family are located in the phospholipid bilayer of the cell membrane, while a smaller portion is found in the membranes of cellular organelles. Transmembrane protein 43 (TMEM43) is a member of the TMEM protein family and is encoded by the TMEM43 gene. This protein consists of 400 amino acids and has 4 transmembrane domains and 1 membrane-associated domain. TMEM43 is localized to various biological membranes within the cell, such as the cell membrane and nuclear membrane, where it forms transmembrane channels for various ions. Additionally, TMEM43 is expressed in many species, showing high genetic similarity, especially with the four transmembrane domains being highly conserved. Current studies on the TMEM43 gene are still in its early stages, mainly focusing on its association with arrhythmogenic right ventricular cardiomyopathy (ARVC) and cancer. However, recent studies suggest that pathogenic mutations in TMEM43 may cause auditory neuropathy spectrum disorder (ANSD). Patients with TMEM43 p.Ser372Ter exhibited late-onset progressive ANSD. Impact of TMEM43 pathogenic mutations on individual hearing was likely mediated through effects on gap junction (GJ) structures on glia-like supporting cells (GLS), cell membranes. The TMEM43 p.Arg372Ter pathogenic mutation primarily affected the structure and function of TMEM43 protein, leading to premature termination of protein translation and the production of a truncated protein. Abnormal TMEM43 protein significantly reduced K+ influx in GLS cells, disrupting the endolymphatic K+ circulation and cochlear microenvironment homeostasis. When K+ circulation was obstructed, the endocochlear potential (EP) became abnormal, impairing the physiological function of hair cells and potentially leading to hearing impairment. However, it is important to note that studies on the mechanism is limited, and more experimental evidence is needed to confirm this hypothesis. Currently, there is a significant gap in research on TMEM43 and hearing loss, with many issues remaining unresolved. While TMEM43 has been studied in relation to hearing loss in humans, zebrafish, mice, and rats, the research is still preliminary. Detailed investigations into the molecular pathogenic mechanisms, the impact of mutations on hearing damage, and related therapeutic strategies are needed. Additionally, as a newly identified hearing loss-related gene, the mutation frequency and incidence of hearing disorders associated with TMEM43 have not been effectively quantified. For example, the ClinVar database listed 829 mutation sites for the TMEM43 gene, with only three mutations related to auditory neuropathy: c.605A>T (p.Asn202Ile), c.889T>A (p.Phe297Ile), and c.1114C>T (p.Arg372Ter). Aside from the aforementioned TMEM43 c.1114C>T (p.Arg372Ter) mutation observed in patients, the other two mutations were experimentally induced and have not been found in patients. Consequently, these mutations have been classified as unknown significance. We reviewed the current understanding of TMEM43 and hearing loss, analyzed its role in ear development and sound conduction, and explored the impact of TMEM43 gene variations on hearing loss, aiming to provide new insights for future research and precision medicine related to TMEM43.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Construction of A Nomogram Prognostic Model Based on Pretreatment Inflammatory Indicator for Esophageal Squamous Cell Carcinoma Patients Treated with Radical Radiotherapy
Shenbo FU ; Long JIN ; Jing LIANG ; Junjun GUO ; Yu CHE ; Chenyang LI ; Yong CHEN
Cancer Research on Prevention and Treatment 2025;52(2):142-150
Objective To describe the significance of the pretreatment inflammatory indicators in predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC) after undergoing radical radiotherapy. Methods The data of 246 ESCC patients who underwent radical radiotherapy were retrospectively collected. Receiver operating characteristic (ROC) curves were drawn to determine the optimal cutoff values for platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII). The Kaplan-Meier method was used for survival analysis. We conducted univariate and multivariate analyses by using the Cox proportional risk regression model. Software R (version 4.2.0) was used to create the nomogram of prognostic factors. Results The results of the ROC curve analysis showed that the optimal cutoff values of PLR, NLR, and SII were 146.06, 2.67, and 493.97, respectively. The overall response rates were 77.6% and 64.5% in the low and high NLR groups, respectively (P<0.05). The results of the Kaplan-Meier survival analysis revealed that the prognosis of patients in the low PLR, NLR, and SII group was better than that of patients in the high PLR, NLR, and SII group (all P<0.05). The results of the multivariate Cox regression analysis showed that gender, treatment modalities, T stage, and NLR were independent factors affecting the overall survival (OS). In addition, T stage and NLR were independent factors affecting the progression-free survival (PFS) (all P<0.05). The nomogram models of OS and PFS prediction were established based on multivariate analysis. The C-index values were 0.703 and 0.668. The calibration curves showed excellent consistency between the predicted and observed OS and PFS. Conclusion The pretreatment values of PLR, NLR, and SII are correlated with the prognosis of patients with ESCC who underwent radical radiotherapy. Moreover, NLR is an independent factor affecting the OS and PFS of ESCC patients. The NLR-based nomogram model has a good predictive ability.
4.Proteomics and Network Pharmacology Reveal Mechanism of Xiaoer Huatan Zhike Granules in Treating Allergic Cough
Youqi DU ; Yini XU ; Jiajia LIAO ; Chaowen LONG ; Shidie TAI ; Youwen DU ; Song LI ; Shiquan GAN ; Xiangchun SHEN ; Ling TAO ; Shuying YANG ; Lingyun FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):69-79
ObjectiveTo explore the pharmacological mechanism involved in the treatment of allergic cough (AC) by Xiaoer Huatan Zhike granules (XEHT) based on proteomics and network pharmacology. MethodsAfter sensitization by intraperitoneal injection of 1 mL suspension containing 2 mg ovalbumin (OVA) and 100 mg aluminum hydroxide, a guinea pig model of allergic cough was constructed by nebulization with 1% OVA. The modeled guinea pigs were randomized into the model, low-, medium- and high-dose (1, 5, 20 g·kg-1, respectively) XEHT, and sodium montelukast (1 mg·kg-1) groups (n=6), and another 6 guinea pigs were selected as the blank group. The guinea pigs in drug administration groups were administrated with the corresponding drugs by gavage, and those in the blank and model groups received the same volume of normal saline by gavage, 1 time·d-1. After 10 consecutive days of drug administration, the guinea pigs were stimulated by 1% OVA nebulization, and the coughs were observed. The pathological changes in the lung tissue were observed by hematoxylin-eosin staining. The enzyme-linked immunosorbent assay was performed to measure the levels of C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), and malondialdehyde (MDA) in the bronchoalveolar lavage fluid (BALF) and immunoglobulin G (IgG) and immunoglobulin A (IgA) in the serum. Immunohistochemistry (IHC) was employed to observe the expression of IL-6 and TNF-α in the lung tissue. Transmission electron microscopy was employed observe the alveolar type Ⅱ epithelial cell ultrastructure. Real-time PCR was employed to determine the mRNA levels of IL-6, interleukin-1β (IL-1β), and TNF-α in the lung tissue. Label-free proteomics was used to detect the differential proteins among groups. Network pharmacology was used to predict the targets of XEHT in treating AC. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to search for the same pathways from the results of proteomics and network pharmacology. ResultsCompared with the blank group, the model group showed increased coughs (P<0.01), elevated levels of CRP, TNF-α, IL-6, and MDA and lowered level of SOD in the BALF (P<0.05, P<0.01), elevated levels of IgA and IgG in the serum (P<0.05, P<0.01), congestion of the lung tissue and infiltration of inflammatory cells, increased expression of IL-6 and TNF-α (P<0.01), large areas of low electron density edema in type Ⅱ epithelial cells, obvious swelling and vacuolization of the organelles, karyopyknosis or sparse and dissolved chromatin, and up-regulated mRNA levels of IL-6, IL-1β, and TNF-α (P<0.01). Compared with the model group, the drug administration groups showed reduced coughs (P<0.01), lowered levels of CRP, TNF-α, IL-6, and MDA and elevated level of SOD in the BALF (P<0.05, P<0.01), alleviated lung tissue congestion, inflammatory cell infiltration, and type Ⅱ epithelial cell injury, and decreased expression of IL-6 and TNF-α (P<0.01). In addition, the medium-dose XEHT group and the montelukast sodium group showcased lowered serum levels of IgA and IgG (P<0.05, P<0.01). The medium- and high-dose XEHT groups and the montelukast sodium showed down-regulated mRNA levels of IL-6, IL-1β, and TNF-α and the low-dose XEHT group showed down-regulated mRNA levels of IL-6 and TNF-α (P<0.05, P<0.01). Phospholipase D, mammalian target of rapamycin (mTOR), and epidermal growth factor receptor family of receptor tyrosine kinase (ErbB) signaling pathways were the common pathways predicted by both proteomics and network pharmacology. ConclusionProteomics combined with network pharmacology reveal that XEHT can ameliorate AC by regulating the phospholipase D, mTOR, and ErbB signaling pathways.
5.STAR Guideline Terminology (I): Planning and Launching
Zhewei LI ; Qianling SHI ; Hui LIU ; Xufei LUO ; Zijun WANG ; Jinhui TIAN ; Long GE ; Yaolong CHEN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):216-223
To develop a guideline terminology system and promote its standardization, thereby enhancing medical staff's accurate understanding and correct application of guidelines. A systematic search was conducted for guideline development manuals and method ological literature (as of October 25, 2024). After screening, relevant terms from the guideline planning and launching stages were extracted and standardized. The term list and definitions were finalized through discussion and evaluation at a consensus conference. A total of 36 guideline manuals and 14 method ological articles were included, and 27 core terms were identified. The standardization of guideline terminology is essential for improving guideline quality, facilitating interdisciplinary communication, and enhancing other related aspects. It is recommended that efforts to advance the standardization and continuous updating of the terminology system should be prioritized in the future to support the high-quality development of guidelines.
6.Exploring urban versus rural disparities in atrial fibrillation: prevalence and management trends among elderly Chinese in a screening study.
Wei ZHANG ; Yi CHEN ; Lei-Xiao HU ; Jia-Hui XIA ; Xiao-Fei YE ; Wen-Yuan-Yue WANG ; Xin-Yu WANG ; Quan-Yong XIANG ; Qin TAN ; Xiao-Long WANG ; Xiao-Min YANG ; De-Chao ZHAO ; Xin CHEN ; Yan LI ; Ji-Guang WANG ; FOR THE IMPRESSION INVESTIGATORS AND COORDINATORS
Journal of Geriatric Cardiology 2025;22(2):246-254
BACKGROUND:
Atrial fibrillation (AF) is a common cardiac arrhythmia in the elderly. This study aimed to evaluate urban-rural disparities in its prevalence and management in elderly Chinese.
METHODS:
Consecutive participants aged ≥ 65 years attending outpatient clinics were enrolled for AF screening using handheld single-lead electrocardiogram (ECG) from April 2017 to December 2022. Each ECG rhythm strip was reviewed from the research team. AF or uninterpretable single-lead ECGs were referred for 12-lead ECG. Primary study outcome comparison was between rural and urban areas for the prevalence of AF. The Student's t-test was used to compare mean values of clinical characteristics between rural and urban participants, while the Pearson's chi-square test was used to compare between-group proportions. Multivariate stepwise logistic regression analysis was performed to estimate the association between AF and various patient characteristics.
RESULTS:
The 29,166 study participants included 13,253 men (45.4%) and had a mean age of 72.2 years. The 7073 rural participants differed significantly (P ≤ 0.02) from the 22,093 urban participants in several major characteristics, such as older age, greater body mass index, and so on. The overall prevalence of AF was 4.6% (n = 1347). AF was more prevalent in 7073 rural participants than 22,093 urban participants (5.6% vs. 4.3%, P < 0.01), before and after adjustment for age, body mass index, blood pressure, pulse rate, cigarette smoking, alcohol consumption and prior medical history. Multivariate logistic regression analysis identified overweight/obesity (OR = 1.35, 95% CI: 1.17-1.54) in urban areas and cigarette smoking (OR = 1.62, 95% CI: 1.20-2.17) and alcohol consumption (OR = 1.42, 95% CI: 1.04-1.93) in rural areas as specific risk factors for prevalent AF. In patients with known AF in urban areas (n = 781) and rural areas (n = 338), 60.6% and 45.9%, respectively, received AF treatment (P < 0.01), and only 22.4% and 17.2%, respectively, received anticoagulation therapy (P = 0.05).
CONCLUSIONS
In China, there are urban-rural disparities in AF in the elderly, with a higher prevalence and worse management in rural areas than urban areas. Our study findings provide insight for health policymakers to consider urban-rural disparity in the prevention and treatment of AF.
7.Canagliflozin ameliorates ferritinophagy in HFpEF rats.
Sai MA ; Qing-Juan ZUO ; Li-Li HE ; Guo-Rui ZHANG ; Ting-Ting ZHANG ; Zhong-Li WANG ; Jian-Long ZHAI ; Yi-Fang GUO
Journal of Geriatric Cardiology 2025;22(1):178-189
BACKGROUND:
Recent studies have shown that sodium-glucose cotransporters-2 (SGLT2) inhibitors significantly improve major adverse cardiovascular events in heart failure with preserved ejection fraction (HFpEF) patients, but the exact mechanism is unknown. Ferritinophagy is a special form of selective autophagy that participates in ferroptosis. In this study, we aimed to investigate whether ferritinophagy was activated during the occurrence of HFpEF, and whether canagliflozin (CANA) could inhibite ferritinophagy.
METHODS:
We reared Dahl salt-sensitive (DSS) rats on a high-salt diet to construct a hypertensive HFpEF model, and simultaneously administered CANA intervention. Then we detected indicators related to ferritinophagy.
RESULTS:
The expression of nuclear receptor coactivator 4 (NCOA4), as well as microtubule-associated proteins light chain 3 (LC3), Bcl-2 interacting protein 1 (Beclin-1) and p62, were upregulated in HFpEF rats, accompanied by the downregulation of ferritin heavy chain 1 (FTH1), upregulation of mitochondrial iron transporter sideroflexin1 (SFXN1) and increased reactive oxygen species (ROS) production. Above changes were diminished by CANA.
CONCLUSION
Ferritinophagy is activated in HFpEF rats and then inhibited by CANA, leading to HFpEF benefits. The inhibition of ferritinophagy could provide new prospective targets for the prevention and treatment of HFpEF, and provide new ideas for investigating the mechanism of cardiovascular benefit of SGLT2 inhibitors.
8.Impact of admission-blood-glucose-to-albumin ratio on all-cause mortality and renal prognosis in critical patients with coronary artery disease: insights from the MIMIC-IV database.
Yong HONG ; Bo-Wen ZHANG ; Jing SHI ; Ruo-Xin MIN ; Ding-Yu WANG ; Jiu-Xu KAN ; Yun-Long GAO ; Lin-Yue PENG ; Ming-Lu XU ; Ming-Ming WU ; Yue LI ; Li SHENG
Journal of Geriatric Cardiology 2025;22(6):563-577
BACKGROUND:
Blood glucose and serum albumin have been associated with cardiovascular disease prognosis, but the impact of admission-blood-glucose-to-albumin ratio (AAR) on adverse outcomes in critical ill coronary artery disease (CAD) patients was not investigated.
METHODS:
Patients diagnosed with CAD were non-consecutively selected from the MIMIC-IV database and categorized into quartiles based on their AAR. The primary outcome was 1-year mortality, and secondary endpoints were in-hospital mortality, acute kidney injury (AKI), and renal replacement therapy (RRT). A restricted cubic splines model and Cox proportional hazard models assessed the association between AAR and adverse outcomes in CAD patients. Kaplan-Meier survival analysis determined differences in endpoints across subgroups.
RESULTS:
A total of 8360 patients were included. There were 726 patients (8.7%) died in the hospital and 1944 patients (23%) died at 1 year. The incidence of AKI and RRT was 63% and 4.3%, respectively. High AAR was markedly associated with in-hospital mortality (HR = 1.587, P = 0.003), 1-year mortality (HR = 1.502, P < 0.001), AKI incidence (HR = 1.579, P < 0.001), and RRT (HR = 1.640, P < 0.016) in CAD patients in the completely adjusted Cox proportional hazard model. Kaplan-Meier survival analysis noted substantial differences in all endpoints based on AAR quartiles. Stratified analysis and interaction test demonstrated stable correlations between AAR and outcomes.
CONCLUSIONS
The results highlight that AAR may be a potential indicator for assessing in-hospital mortality, 1-year mortality, and adverse renal prognosis in critical CAD patients.
9.Multiple biomarkers risk score for accurately predicting the long-term prognosis of patients with acute coronary syndrome.
Zhi-Yong ZHANG ; Xin-Yu WANG ; Cong-Cong HOU ; Hong-Bin LIU ; Lyu LYU ; Mu-Lei CHEN ; Xiao-Rong XU ; Feng JIANG ; Long LI ; Wei-Ming LI ; Kui-Bao LI ; Juan WANG
Journal of Geriatric Cardiology 2025;22(7):656-667
BACKGROUND:
Biomarkers-based prediction of long-term risk of acute coronary syndrome (ACS) is scarce. We aim to develop a risk score integrating clinical routine information (C) and plasma biomarkers (B) for predicting long-term risk of ACS patients.
METHODS:
We included 2729 ACS patients from the OCEA (Observation of cardiovascular events in ACS patients). The earlier admitted 1910 patients were enrolled as development cohort; and the subsequently admitted 819 subjects were treated as validation cohort. We investigated 10-year risk of cardiovascular (CV) death, myocardial infarction (MI) and all cause death in these patients. Potential variables contributing to risk of clinical events were assessed using Cox regression models and a score was derived using main part of these variables.
RESULTS:
During 16,110 person-years of follow-up, there were 238 CV death/MI in the development cohort. The 7 most important predictors including in the final model were NT-proBNP, D-dimer, GDF-15, peripheral artery disease (PAD), Fibrinogen, ST-segment elevated MI (STEMI), left ventricular ejection fraction (LVEF), termed as CB-ACS score. C-index of the score for predication of cardiovascular events was 0.79 (95% CI: 0.76-0.82) in development cohort and 0.77 (95% CI: 0.76-0.78) in the validation cohort (5832 person-years of follow-up), which outperformed GRACE 2.0 and ABC-ACS risk score. The CB-ACS score was also well calibrated in development and validation cohort (Greenwood-Nam-D'Agostino: P = 0.70 and P = 0.07, respectively).
CONCLUSIONS
CB-ACS risk score provides a useful tool for long-term prediction of CV events in patients with ACS. This model outperforms GRACE 2.0 and ABC-ACS ischemic risk score.
10.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*

Result Analysis
Print
Save
E-mail