1.Analysis of factors affecting renal function and surgical complications in recipients after living donor kidney transplantation
Dingran LI ; Jingcheng LÜ ; Yichen ZHU
Organ Transplantation 2026;17(1):77-85
Objective To explore factors affecting the postoperative renal function and surgical complications in recipients of living donor kidney transplantation. Methods A retrospective analysis was conducted on medical records of 119 patients who underwent living donor kidney transplantation at Beijing Friendship Hospital Affiliated to Capital Medical University, from January 2020 to September 2024. The severity of surgical complications was evaluated using the Clavien-Dindo score. Spearman correlation analysis was used to analyze the correlation between preoperative general data, surgical data, preoperative laboratory data and the Clavien-Dindo score. Multiple linear regression analysis was performed on the correlated factors. Univariate and multivariate logistic regression analyses were used to analyze the factors affecting the occurrence of delayed graft function (DGF) after surgery. Results The body mass index, history of hypertension, cold ischemia time, the first warm ischemia time, the second warm ischemia time, prothrombin activity and international normalized ratio were all correlated with the Clavien-Dindo score. Multiple linear regression analysis showed that the longer the second warm ischemia time and the first warm ischemia time were, the higher the Clavien-Dindo score was, and the more severe the postoperative surgical complications were (all P<0.05). Multivariate logistic regression analysis showed that long the first warm ischemia time and long dialysis time were independent risk factors for the occurrence of DGF after surgery (all P<0.05). Conclusions Prolonged the second warm ischemia time and the first warm ischemia time may increase the severity of surgical complications in recipients after living donor kidney transplantation. Long the first warm ischemia time and long dialysis time are independent risk factors for the occurrence of DGF after surgery.
2.Cerebral cavernoma in a child caused by programmed cell death 10 gene mutation: a case report
Fuhui LIU ; Zongming HAN ; Minglei LI ; Zufang LÜ
Chinese Journal of Clinical Medicine 2025;32(1):135-139
The clinical data and genetic test results of a 7-year-old female child with cerebral cavernoma were retrospectively analyzed. The child was admitted to the hospital due to a one-month headache. Brain MRI showed cerebral cavernoma. The genetic testing showed a pathogenic heterozygous mutation c.456T>G (p.Tyr152Ter, 61) in the programmed cell death 10 (PDCD10) gene, while both parents had the wild-type at the locus. The child had no symptoms of epileptic seizures, cerebral hemorrhage, or neurological dysfunction, and received conservative treatment, with regular outpatient follow-up MRI scans.
3.Application and challenge of ethical review of human organ donation and transplantation from ethical utilitarianism perspective
Qi YAO ; Renjie LÜ ; Xuemei LÜ ; Juan YAN
Organ Transplantation 2025;16(1):141-146
Ethical utilitarianism is a consequence-oriented ethical theory that pursues the maximization of happiness and fully considers the long-term impact of behavior. In the ethical review of human organ donation and transplantation, this theory is mainly applied in three aspects, ethical review supervision, process and content. However, in practice, it faces challenges such as the difficulty and subjectivity of utility calculation, the balance between individual rights and social welfare, the long-term impact of decision-making, and international cooperation under a global perspective. Therefore, governance strategies such as improving ethical review policy rules, refining the ethical review system by drawing on international experience, and strengthening public education and publicity are proposed. Despite many challenges, ethical utilitarianism still provides an important theoretical framework for the ethical review of human organ donation and transplantation. Therefore, this article reviews the application of ethical utilitarianism in the ethical review of human organ donation and transplantation and its challenges, aiming to provide a reference for related research on the ethical review of human organ donation and transplantation.
4.Research Progress on Human Ovarian Aging Using Non-Human Primates as Laboratory Animals
Laboratory Animal and Comparative Medicine 2025;45(1):47-54
The ovary has two main functions: folliculogenesis and hormone secretion, both of which are closely related to female fertility. Ovarian aging is characterized by morphological changes, a reduction in follicle numbers, and fluctuations in hormone levels. It not only leads to a decline in female fertility, but is also considered to be a key driver of multi-organ aging. In addition, the disruption of sex hormone secretion associated with ovarian aging can lead to the occurrence of related diseases and symptoms, such as cardiovascular diseases, sleep disorders, and hot flashes. Due to the influence of social pressures and personal career planning, many modern women are increasingly postponing childbearing. However, ovarian aging does not slow down with advancing age. As a result, many women face issues such as infertility when they are ready to have children, having missed their optimal childbearing age. This leads to growing interest in research on delaying ovarian aging. Non-human primates share the closest evolutionary relationship with humans, with a genomic sequence identity of 93%, which grants them unparalleled advantages over other model animals in studies on physiological metabolism, reproductive endocrinology, and developmental aging. Findings obtained in non-human primates are also more reliably translatable to human medical research. This study begins by discussing the current state of ovarian aging research and treatment strategies, highlighting the advantages of non-human primates as laboratory animals for ovarian aging research. It then reviews research progress in areas such as reproductive endocrine hormone levels, ovarian morphology and function, and other physiological changes associated with ovarian aging. Furthermore, it summarizes existing challenges and future research directions, aiming to provide valuable insights for researchers.
5.Application of Non-invasive Deep Brain Stimulation in Parkinson’s Disease Treatment
Yu-Feng ZHANG ; Wei WANG ; Zi-Jun LU ; Jiao-Jiao LÜ ; Yu LIU
Progress in Biochemistry and Biophysics 2025;52(5):1196-1205
Parkinson’s disease (PD) is a common neurodegenerative disorder that significantly impacts patients’ independence and quality of life, imposing a substantial burden on both individuals and society. Although dopaminergic replacement therapies provide temporary relief from various symptoms, their long-term use often leads to motor complications, limiting overall effectiveness. In recent years, non-invasive deep brain stimulation (DBS) techniques have emerged as promising therapeutic alternatives for PD, offering a means to modulate deep brain regions with high precision without invasive procedures. These techniques include temporal interference stimulation (TIs), low-intensity transcranial focused ultrasound stimulation (LITFUS), transcranial magneto-acoustic stimulation (TMAS), non-invasive optogenetic modulation, and non-invasive magnetoelectric stimulation. They have demonstrated significant potential in alleviating various PD symptoms by modulating neural activity within specific deep brain structures affected by the disease. Among these approaches, TIs and LITFUS have received considerable attention. TIs generate low-frequency interference by applying two slightly different high-frequency electric fields, targeting specific brain areas to alleviate symptoms such as tremors and bradykinesia. LITFUS, on the other hand, uses low-intensity focused ultrasound to non-invasively stimulate deep brain structures, showing promise in improving both motor function and cognition in PD patients. The other three techniques, while still in early research stages, also hold significant promise for deep brain modulation and broader clinical applications, potentially complementing existing treatment strategies. Despite these promising findings, significant challenges remain in translating these techniques into clinical practice. The heterogeneous nature of PD, characterized by variable disease progression and individualized treatment responses, necessitates flexible protocols tailored to each patient’s unique needs. Additionally, a comprehensive understanding of the mechanisms underlying these treatments is crucial for refining protocols and maximizing their therapeutic potential. Personalized medicine approaches, such as the integration of neuroimaging and biomarkers, will be pivotal in customizing stimulation parameters to optimize efficacy. Furthermore, while early-stage clinical trials have reported improvements in certain symptoms, long-term efficacy and safety data are limited. To validate these techniques, large-scale, multi-center, randomized controlled trials are essential. Parallel advancements in device design, including the development of portable and cost-effective systems, will improve patient access and adherence to treatment protocols. Combining non-invasive DBS with other interventions, such as pharmacological treatments and physical therapy, could also provide a more comprehensive and synergistic approach to managing PD. In conclusion, non-invasive deep brain stimulation techniques represent a promising frontier in the treatment of Parkinson’s disease. While they have demonstrated considerable potential in improving symptoms and restoring neural function, further research is needed to refine protocols, validate long-term outcomes, and optimize clinical applications. With ongoing technological and scientific advancements, these methods could offer PD patients safer, more effective, and personalized treatment options, ultimately improving their quality of life and reducing the societal burden of the disease.
6.The Mechanism of Blue Light in Inactivating Microorganisms and Its Applications in The Food and Medical Fields
Ruo-Hong BI ; Rong-Qian WU ; Yi LÜ ; Xiao-Fei LIU
Progress in Biochemistry and Biophysics 2025;52(5):1219-1228
Blue light inactivation technology, particularly at the 405 nm wavelength, has demonstrated distinct and multifaceted mechanisms of action against both Gram-positive and Gram-negative bacteria, offering a promising alternative to conventional antibiotic therapies. For Gram-positive pathogens such as Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus (MRSA), the bactericidal effects are primarily mediated by endogenous porphyrins (e.g., protoporphyrin III, coproporphyrin III, and uroporphyrin III), which exhibit strong absorption peaks between 400-430 nm. Upon irradiation, these porphyrins are photoexcited to generate cytotoxic reactive oxygen species (ROS), including singlet oxygen, hydroxyl radicals, and superoxide anions, which collectively induce oxidative damage to cellular components. Early studies by Endarko et al. revealed that (405±5) nm blue light at 185 J/cm² effectively inactivated L. monocytogenes without exogenous photosensitizers, supporting the hypothesis of intrinsic photosensitizer involvement. Subsequent work by Masson-Meyers et al. demonstrated that 405 nm light at 121 J/cm² suppressed MRSA growth by activating endogenous porphyrins, leading to ROS accumulation. Kim et al. further elucidated that ROS generated under 405 nm irradiation directly interact with unsaturated fatty acids in bacterial membranes, initiating lipid peroxidation. This process disrupts membrane fluidity, compromises structural integrity, and impairs membrane-bound proteins, ultimately causing cell death. In contrast, Gram-negative bacteria such as Salmonella, Escherichia coli, Helicobacter pylori, Pseudomonas aeruginosa, and Acinetobacter baumannii exhibit more complex inactivation pathways. While endogenous porphyrins remain central to ROS generation, studies reveal additional photodynamic contributors, including flavins (e.g., riboflavin) and bacterial pigments. For instance, H. pylori naturally accumulates protoporphyrin and coproporphyrin mixtures, enabling efficient 405 nm light-mediated inactivation without antibiotic resistance concerns. Kim et al. demonstrated that 405 nm light at 288 J/cm² inactivates Salmonella by inducing genomic DNA oxidation (e.g., 8-hydroxy-deoxyguanosine formation) and disrupting membrane functions, particularly efflux pumps and glucose uptake systems. Huang et al. highlighted the enhanced efficacy of pulsed 405 nm light over continuous irradiation for E. coli, attributing this to increased membrane damage and optimized ROS generation through frequency-dependent photodynamic effects. Environmental factors such as temperature, pH, and osmotic stress further modulate susceptibility, sublethal stress conditions (e.g., high salinity or acidic environments) weaken bacterial membranes, rendering cells more vulnerable to subsequent ROS-mediated damage. The 405 nm blue light inactivates drug-resistant Pseudomonas aeruginosa through endogenous porphyrins, pyocyanin, and pyoverdine, with the inactivation efficacy influenced by bacterial growth phase and culture medium composition. Intriguingly, repeated 405 nm exposure (20 cycles) failed to induce resistance in A. baumannii, with transient tolerance linked to transient overexpression of antioxidant enzymes (e.g., superoxide dismutase) or stress-response genes (e.g., oxyR). For Gram-positive bacteria, porphyrin abundance dictates sensitivity, whereas in Gram-negative species, membrane architecture and accessory pigments modulate outcomes. Critically, ROS-mediated damage is nonspecific, targeting DNA, proteins, and lipids simultaneously, thereby minimizing resistance evolution. The 405 nm blue light technology, as a non-chemical sterilization method, shows promise in medical and food industries. It enhances infection control through photodynamic therapy and disinfection, synergizing with red light for anti-inflammatory treatments (e.g., acne). In food processing, it effectively inactivates pathogens (e.g., E. coli, S. aureus) without altering food quality. Despite efficacy against multidrug-resistant A. baumannii, challenges include device standardization, limited penetration in complex materials, and optimization of photosensitizers/light parameters. Interdisciplinary research is needed to address these limitations and scale applications in healthcare, food safety, and environmental decontamination.
7.Sequencing and analysis of the complete mitochondrial genome of Bulinus globosus
Peijun QIAN ; Mutsaka-Makuvaza MASCELINE JENIPHER ; Chao LÜ ; Yingjun QIAN ; Wenya WANG ; Shenglin CHEN ; Andong XU ; Jingbo XUE ; Jing XU ; Xiaonong ZHOU ; Midzi NICHOLAS ; Shizhu LI
Chinese Journal of Schistosomiasis Control 2025;37(2):116-126
Objective To analyze the structural and phylogenetic characteristics of the mitochondrial genome from Bulinus globosus, so as to provide a theoretical basis for classification and identification of species within the Bulinus genus, and to provide insights into understanding of Bulinus-schistosomes interactions and the mechanisms of parasite transmission. Methods B. globosus samples were collected from the Ruya River basin in Zimbabwe. Mitochondrial DNA was extracted from B. globosus samples and the corresponding libraries were constructed for high-throughput sequencing on the Illumina NovaSeq 6000 platform. After raw sequencing data were subjected to quality control using the fastp software, genome assembly was performed using the A5-miseq and SPAdes tools, and genome annotation was conducted using the MITOS online server. Circular maps and sequence plots of the mitochondrial genome were generated using the CGView and OGDRAW software, and the protein conservation motifs and structures were analyzed using the TBtools software. Base composition and codon usage bias were analyzed and visualized using the software MEGA X and the ggplot2 package in the R software. In addition, a phylogenetic tree was created in the software MEGA X after sequence alignment with the software MAFFT 7, and visualized using the software iTOL. Results The mitochondrial genome of B. globosus was a 13 730 bp double-stranded circular molecule, containing 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and 13 protein-coding genes, with a marked AT preference. The mitochondrial genome composition of B. globosus was similar to that of other species within the Bulinus genus. Phylogenetic analysis revealed that the complete mitochondrial genome sequence of B. globosus was clustered with B. truncatus, B. nasutus, and B. ugandae into the same evolutionary clade, and gene superfamily analysis showed that the metabolism-related proteins of B. globosus were highly conserved, notably the cytochrome c oxidase family, which showed a significant consistency. Conclusions This is the first whole mitochondrial genome sequencing to decode the compositional features of the mitochondrial genome of B. globosus from Zimbabwe and its evolutionary relationship within the Bulinus genus, which provides important insights for further understanding of the phylogeny and mitochondrial genome characteristics of the Bulinus genus.
8.The effect and mechanism of Huangkui capsule pretreatment of human umbilical cord mesenchymal stem cell-derived exosomes on improving renal ischemia-reperfusion injury
Yawei YAO ; Jiahui HE ; Hao WANG ; Yutong WANG ; Ruiyan WANG ; Xingyu WAN ; Yujia LIU ; Xinghua LÜ
Organ Transplantation 2025;16(2):237-245
Objective To explore the effects and mechanisms of human umbilical cord mesenchymal stem cell (HUC-MSC)-derived exosomes (Exo) pretreated with Huangkui capsules on renal ischemia-reperfusion injury (IRI). Methods HUC-MSCs were cultured in media containing different concentrations of Huangkui capsules for 24 hours to determine cell viability and select an appropriate concentration for subsequent experiments. HUC-MSCs were pretreated with 50 μg/mL Huangkui capsules for 24 hours, and Exo were extracted using an exosome extraction kit. The morphology was observed under a transmission electron microscope, particle size was measured by nanoparticle tracking analysis, and the expression of exosomal membrane surface marker proteins was detected by Western blot. Human renal tubular epithelial cells (HK-2 cells) were randomly divided into hypoxia/reoxygenation group (M group), hypoxia/reoxygenation + Exo group (E group), and hypoxia/reoxygenation + Huangkui capsules pretreated Exo group (H group). Western blotting was used to measure the expression of endoplasmic reticulum stress (ERS)-related proteins, and real-time fluorescent quantitative reverse transcription polymerase chain reaction was used to measure the expression of ERS-related gene messenger RNA (mRNA). Mice were randomly divided into sham operation group (Sham group), ischemia-reperfusion group (I/R group), ischemia-reperfusion + Exo group (E group), and ischemia-reperfusion + Huangkui capsules pretreated Exo group (H group). Renal histological assessment, serum creatinine (Scr), blood urea nitrogen (BUN) measurement and inflammatory factor detection were performed 24 hours later. Results Both Exo and Huangkui capsules prereated Exo had a bilayer membrane structure and a cup-shaped morphology; their average particle sizes were 116.8 nm and 81.3 nm, respectively. Both expressed CD9, CD63, TSG101. Compared with the M group, the E group had decreased relative expression of transcription factor 6 (ATF6) and protein kinase R-like endoplasmic reticulum kinase (PERK) proteins, increased mRNA relative expression, increased relative expression of C/EBP homologous protein (CHOP) protein, and decreased mRNA relative expression. Compared with the E group, the H group had decreased relative expression of ATF6, PERK, CHOP proteins, and decreased mRNA relative expression of ATF6 and PERK (all P<0.05). Animal experimental results showed that compared with the Sham group, the I/R group had increased renal tubular injury scores, Scr, BUN, interleukin (IL)-1β, IL-10, IL-18, tumor necrosis factor (TNF)-α levels. Compared with the I/R group, the E and H groups had decreased renal tubular injury scores and Scr, BUN, IL-1β, IL-10, IL-18, TNF-α levels. Compared with the E group, the H group had decreased renal tubular injury scores and Scr, BUN, IL-1β, IL-10, IL-18, TNF-α levels (all P<0.05). Conclusions Huangkui capsules pretreatment HUC-MSC-derived Exo may alleviate renal IRI by inhibiting ERS.
9.Determination of biological activity of teduglutide by a homogeneous time-resolved fluorescence method
Xiao-ming ZHANG ; Ran MA ; Li-jing LÜ ; Lü-yin WANG ; Ping LÜ ; Cheng-gang LIANG ; Jing LI
Acta Pharmaceutica Sinica 2025;60(1):211-217
In this study, we constructed a GLP-2R-HEK293 cell line and established a method for the determination of the
10.Cross - border joint prevention and control of tropical diseases in countries along the “Belt and Road” Initiative: a framework and roadmap
Yingjun QIAN ; Wei DING ; Hongmei LI ; Duoquan WANG ; Shan LÜ ; Shizhu LI ; Xiaonong ZHOU
Chinese Journal of Schistosomiasis Control 2025;37(1):8-13
Recently, there has been an increasing risk of importation of tropical diseases into China and the resultant re-transmission in the country with the in-depth implementation of the “Belt and Road” Initiative, which poses a serious threat to the national public health security. To effectively respond to the cross-border transmission risk of tropical diseases and facilitate the process towards tropical disease control and elimination in China and the countries along the “Belt and Road” Initiative, this article analyzes the current status and governance risks of major imported tropical diseases, cross-border joint prevention and control polices implemented for tropical diseases and challenges in the establishment of the joint prevention and control system for tropical diseases in China, and discusses the establishment and implementation path of the joint prevention and control system for tropical diseases in countries along the “Belt and Road” Initiative. This path covers the establishment of cross-border cooperation mechanisms, research and development and pilot production of Chinese public health products, and implementation of key cross-border tropical disease prevention and control projects. The establishment of this system will further improve Chinese prevention and control capabilities for key cross-border tropical diseases, build a demonstrative prevention and control model for tropical diseases, and promote international technical exchanges and cooperation of tropical diseases.

Result Analysis
Print
Save
E-mail