1.KLF6mRNA expression in primary hepatocellular carcinoma.
Shaoping, WANG ; Xiaoping, CHEN ; Wanguang, ZHANG ; Fazu, QIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2004;24(6):585-7
To investigate the expression of KLF6mRNA in primary hepatocellular carcinoma (HCC), nomal liver tissues and the tissues adjacent to the cancers, reverse-transcription polymerase chain reaction (RT-PCR) was employed to investigate the expression of the KLF6 gene in HCC, the corresponding adjacent non-cancerous tissues and normal liver tissue. Our results showed that an amplified fragment of 427 bp DNA was detected in 18 of 19 (94.7%) adjacent non-cancerous tissues and normal liver tissue, and in 12 (85.7%) of 14 HCC. There were no significant differences in the levels of KLF6 mRNA between normal liver and liver tumors (P>0.05). It is concluded that KLF6 mRNA is generally expressed in HCC.
Carcinoma, Hepatocellular/*metabolism
;
Kruppel-Like Transcription Factors/*biosynthesis
;
Kruppel-Like Transcription Factors/genetics
;
Liver/metabolism
;
Liver Neoplasms/*metabolism
;
Proto-Oncogene Proteins/*biosynthesis
;
Proto-Oncogene Proteins/genetics
;
RNA, Messenger/biosynthesis
;
RNA, Messenger/genetics
;
Reverse Transcriptase Polymerase Chain Reaction
2.KLF6mRNA expression in primary hepatocellular carcinoma.
Shaoping WANG ; Xiaoping CHEN ; Wanguang ZHANG ; Fazu QIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2004;24(6):585-587
To investigate the expression of KLF6mRNA in primary hepatocellular carcinoma (HCC), nomal liver tissues and the tissues adjacent to the cancers, reverse-transcription polymerase chain reaction (RT-PCR) was employed to investigate the expression of the KLF6 gene in HCC, the corresponding adjacent non-cancerous tissues and normal liver tissue. Our results showed that an amplified fragment of 427 bp DNA was detected in 18 of 19 (94.7%) adjacent non-cancerous tissues and normal liver tissue, and in 12 (85.7%) of 14 HCC. There were no significant differences in the levels of KLF6 mRNA between normal liver and liver tumors (P>0.05). It is concluded that KLF6 mRNA is generally expressed in HCC.
Carcinoma, Hepatocellular
;
metabolism
;
Humans
;
Kruppel-Like Factor 6
;
Kruppel-Like Transcription Factors
;
biosynthesis
;
genetics
;
Liver
;
metabolism
;
Liver Neoplasms
;
metabolism
;
Proto-Oncogene Proteins
;
biosynthesis
;
genetics
;
RNA, Messenger
;
biosynthesis
;
genetics
;
Reverse Transcriptase Polymerase Chain Reaction
3.Effect of the new human transcription factor hBKLF on the proliferation, differentiation of K562 cell line and hemoglobin synthesis.
Mang-Ju WANG ; Xiao-Yun MA ; Yong-Jin SHI ; Shu-Lan WU ; Fu-Chu HE
Journal of Experimental Hematology 2006;14(6):1083-1088
The human basic Krüppel-like factor (hBKLF) is a newly cloned human transcription factor from the cDNA library of fetal liver. It belongs to the Krüppel-like transcription factor family. Previous expression study showed that it is a hematopoietic related factor. This study was aimed to investigate the effect of hBKLF on cell proliferation, differentiation and hemoglobin synthesis by using K562 cell line as model. The sense and antisense expression plasmids of hBKLF were constructed, and transfected into K562 cells by lipofectamine. After G418 selection for 4 weeks, the cell line with stable expression of the gene was obtained. Then the hBKLF expression level, proliferation ability, colony formation and hemoglobin production were detected by RT-PCR and Western blot, MTT method, methyl cellulose semisolid culture method and benzidine test respectively. The morphologic change of cell was observed with inverted microscope. The results showed that the sense plasmid could increase hBKLF level and antisense plasmid could decrease hBKLF expression. When hBKLF level was down-regulated, K562 cells could proliferate more quickly and synthesize more hemoglobin. But there were no differences in colony formation ability and no apparent morphologic change. It is concluded that hBKLF can inhibit hematopoietic cell proliferation and hemoglobin synthesis. It is suggested that hBKLF plays an important role in the proliferation and differentiation of hematopoietic cells.
Animals
;
COS Cells
;
Cell Differentiation
;
physiology
;
Cell Proliferation
;
drug effects
;
Cell Transformation, Neoplastic
;
drug effects
;
Cercopithecus aethiops
;
Hemoglobins
;
biosynthesis
;
Humans
;
K562 Cells
;
Kruppel-Like Transcription Factors
;
biosynthesis
;
genetics
;
pharmacology
;
Transcription Factors
;
biosynthesis
;
genetics
;
Transfection
4.Possible role of GLI3 gene in the pathogenesis of idiopathic congenital talipes equinovarus.
Dong-hua CAO ; Xuan ZHANG ; Chang-kun LIN ; Chun-lian JIN
Chinese Journal of Medical Genetics 2012;29(3):260-265
OBJECTIVETo investigate the relationship between GLI3 gene and pathogenesis of idiopathic congenital talipes equinovarus (ICTEV).
METHODPotential mutations in the coding region of GLI3 were detected among 84 patients with ICTEV by denaturing gradient electrophoresis. Expression of GLI3 in the ICTEV patients' disease tissues was assessed by reverse transcription PCR. Following generation of rat model for ICTEV, mRNA and protein levels of GLI3 were evaluated by real-time PCR and immunohistochemistry and Western blotting.
RESULTSNo mutation was found in exons 1 - 8 and 13 of GLI3 gene among the 84 ICTEV patients. No expression of GLI3 gene was detected in the flexor hallucis longus of ICTEV patients or normal controls. Expression of Gli3, in terms of both mRNA and protein, was stronger in the hindlimb of ICTEV rat embryos compared with normal controls.
CONCLUSIONMutation in the coding region of GLI3 may not be responsible for the occurrence of ICTEV. However, there may still be connection between abnormal expression of the gene and pathogenesis of ICTEV.
Animals ; Clubfoot ; genetics ; metabolism ; pathology ; Gene Expression ; Genetic Predisposition to Disease ; Humans ; Kruppel-Like Transcription Factors ; biosynthesis ; genetics ; Mutation ; Nerve Tissue Proteins ; biosynthesis ; genetics ; Rats ; Rats, Wistar ; Zinc Finger Protein Gli3
5.Effect of KLF6 on prostate cancer cell line PC-3 by transgenic method.
Ming SUN ; Yu-ru YANG ; Jian HUANG ; Hong LI ; Yi-ping LU ; Qiang WEI ; Tian-yong FAN ; Xiang LI
National Journal of Andrology 2006;12(6):502-509
OBJECTIVETo observe the effect of KLF6 on prostate cancer cell line PC-3 by transgenic method.
METHODSWe obtained KLF6 cDNA by RT-PCR method from the liver cell, transfected plasmid pEGFP-C, recombinated with KLF6 into PC-3 cells, and used them as a transfection group and a control group. MTT, flow cytometer and immunocytochemical methods were used to observe the effect of anti-oncogene wild type KLF6 on prostate cancer cell line PC-3 by transgenic method for 48 hours.
RESULTSAfter transfected into PC-3 cells, KLF6 enhanced growth suppression, (30.0 +/- 5.4)% in the transfection group and 0% in the control, P < 0.01, apoptosis, (24.3 +/- 2.3)% in the transfection group and (5.2 +/- 0.7)% in the control, P < 0.01, the down-regulation of the expression of cyclin D1, (25.3 +/- 3.7)% in the transfection group and (38.5 +/- 4.6)% in the control, P < 0.05 and Bcl-2, (18.7 +/- 3.2)% in the transfection group, and (41.8 +/- 5.9)% in the control, P < 0.01 in PC-3 cells. It also decreased the ratio of the cell phase G2/M, increased the ratio of G0/G1 from (58.6 +/- 7.3)% in the control to (80.0 +/- 9.8)% in the transfection group, P < 0.05.
CONCLUSIONPC-3 cells transfected with wild type KLF6 can enhance its growth suppression and apoptosis. It shows great potential for the gene therapy of androgen-independent carcinoma of the prostate.
Apoptosis ; physiology ; Cell Cycle ; physiology ; Cell Line, Tumor ; Cyclin D1 ; biosynthesis ; Down-Regulation ; Flow Cytometry ; Humans ; Immunohistochemistry ; Kruppel-Like Factor 6 ; Kruppel-Like Transcription Factors ; genetics ; physiology ; Male ; Prostatic Neoplasms ; metabolism ; pathology ; Proto-Oncogene Proteins ; genetics ; physiology ; Proto-Oncogene Proteins c-bcl-2 ; biosynthesis ; Reverse Transcriptase Polymerase Chain Reaction ; Transfection