1.Evaluation of anti-inflammatory potential of leaf extracts of Skimmia anquetilia
Kumar Vijender ; Bhat Ali Zulfiqar ; Kumar Dinesh ; Khan NA ; Chashoo IA
Asian Pacific Journal of Tropical Biomedicine 2012;(8):627-630
Objective: To evaluate anti-inflammatory potential of leaf extract of Skimmia anquetilia by in-vitro and in-vivo anti-inflammatory models. Methods: Acute toxicity study was carried out to determine the toxicity level of different extract using acute toxic class method as described in Organization of Economic Co-operation and Development Guidelines No.423. Carrageenan (1%w/w) was administered and inflammation was induced in rat paw. The leaf extracts of Skimmiaanquetilia were evaluated for anti-inflammatory activity by in-vitro human red blood cell (HRBC) membrane stabilization method and in-vivo carrangeenan-induced rat paw edema method.Results:The in-vitro membrane stabilizing test showed petroleum ether (PE), chloroform (CE), ethyl acetate (EE), methanol (ME) and aqueous extracts (AE) showed 49.44%, 59.39%, 60.15%, 68.40%and 52.18 % protection, respectively as compared to control groups. The in-vivo results of CE, EE and ME showed 58.20%, 60.17% and 67.53% inhibition of inflammation after 6h administration of test drugs in albino rats. The potency of the leaf extracts of Skimmia anquetilia were compared with standard diclofenac (10 mg/kg) which showed 74.18% protection in in-vitro HRBC membrane stabilization test and 71.64% inhibition in in-vivo carrangeenan-induced rat paw edema model. The ME showed a dose dependent significant (P< 0.01) anti-inflammatory activity in human red blood cell membrane stabilization test and reduction of edema in carrageenan induced rat paw edema. Conclusions: The present investigation has confirmed the anti-inflammatory activity ofSkimmia anquetilia due to presence of bioactive phytoconstitutes for the first time and provide the pharmacological evidence in favor of traditional claim of Skimmia anquetilia as an anti-inflammatory agent.
2.Genetic structure of apical membrane antigen-1 in Plasmodium falciparum isolates from Pakistan
Komal ZAIB ; Asifullah KHAN ; Muhammad Umair KHAN ; Ibrar ULLAH ; Tuấn Cường VÕ ; Jung-Mi KANG ; Hương Giang LÊ ; Byoung-Kuk NA ; Sahib Gul AFRIDI
Parasites, Hosts and Diseases 2024;62(3):302-312
Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major candidate for the blood-stage malaria vaccine. Genetic polymorphisms of global pfama-1suggest that the genetic diversity of the gene can disturb effective vaccine development targeting this antigen. This study was conducted to explore the genetic diversity and gene structure of pfama-1 among P. falciparum isolates collected in the Khyber Pakhtunkhwa (KP) province of Pakistan. A total of 19 full-length pfama-1 sequences were obtained from KP-Pakistan P. falciparum isolates, and genetic polymorphism and natural selection were investigated. KP-Pakistan pfama-1 exhibited genetic diversity, wherein 58 amino acid changes were identified, most of which were located in ectodomains, and domains I, II, and III. The amino acid changes commonly found in the ectodomain of global pfama-1 were also detected in KP-Pakistan pfama-1. Interestingly, 13 novel amino acid changes not reported in the global population were identified in KP-Pakistan pfama-1. KP-Pakistan pfama-1 shared similar levels of genetic diversity with global pfama-1. Evidence of natural selection and recombination events were also detected in KP-Pakistan pfama-1.
3.Genetic structure of apical membrane antigen-1 in Plasmodium falciparum isolates from Pakistan
Komal ZAIB ; Asifullah KHAN ; Muhammad Umair KHAN ; Ibrar ULLAH ; Tuấn Cường VÕ ; Jung-Mi KANG ; Hương Giang LÊ ; Byoung-Kuk NA ; Sahib Gul AFRIDI
Parasites, Hosts and Diseases 2024;62(3):302-312
Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major candidate for the blood-stage malaria vaccine. Genetic polymorphisms of global pfama-1suggest that the genetic diversity of the gene can disturb effective vaccine development targeting this antigen. This study was conducted to explore the genetic diversity and gene structure of pfama-1 among P. falciparum isolates collected in the Khyber Pakhtunkhwa (KP) province of Pakistan. A total of 19 full-length pfama-1 sequences were obtained from KP-Pakistan P. falciparum isolates, and genetic polymorphism and natural selection were investigated. KP-Pakistan pfama-1 exhibited genetic diversity, wherein 58 amino acid changes were identified, most of which were located in ectodomains, and domains I, II, and III. The amino acid changes commonly found in the ectodomain of global pfama-1 were also detected in KP-Pakistan pfama-1. Interestingly, 13 novel amino acid changes not reported in the global population were identified in KP-Pakistan pfama-1. KP-Pakistan pfama-1 shared similar levels of genetic diversity with global pfama-1. Evidence of natural selection and recombination events were also detected in KP-Pakistan pfama-1.
4.Genetic structure of apical membrane antigen-1 in Plasmodium falciparum isolates from Pakistan
Komal ZAIB ; Asifullah KHAN ; Muhammad Umair KHAN ; Ibrar ULLAH ; Tuấn Cường VÕ ; Jung-Mi KANG ; Hương Giang LÊ ; Byoung-Kuk NA ; Sahib Gul AFRIDI
Parasites, Hosts and Diseases 2024;62(3):302-312
Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major candidate for the blood-stage malaria vaccine. Genetic polymorphisms of global pfama-1suggest that the genetic diversity of the gene can disturb effective vaccine development targeting this antigen. This study was conducted to explore the genetic diversity and gene structure of pfama-1 among P. falciparum isolates collected in the Khyber Pakhtunkhwa (KP) province of Pakistan. A total of 19 full-length pfama-1 sequences were obtained from KP-Pakistan P. falciparum isolates, and genetic polymorphism and natural selection were investigated. KP-Pakistan pfama-1 exhibited genetic diversity, wherein 58 amino acid changes were identified, most of which were located in ectodomains, and domains I, II, and III. The amino acid changes commonly found in the ectodomain of global pfama-1 were also detected in KP-Pakistan pfama-1. Interestingly, 13 novel amino acid changes not reported in the global population were identified in KP-Pakistan pfama-1. KP-Pakistan pfama-1 shared similar levels of genetic diversity with global pfama-1. Evidence of natural selection and recombination events were also detected in KP-Pakistan pfama-1.
5.Genetic structure of apical membrane antigen-1 in Plasmodium falciparum isolates from Pakistan
Komal ZAIB ; Asifullah KHAN ; Muhammad Umair KHAN ; Ibrar ULLAH ; Tuấn Cường VÕ ; Jung-Mi KANG ; Hương Giang LÊ ; Byoung-Kuk NA ; Sahib Gul AFRIDI
Parasites, Hosts and Diseases 2024;62(3):302-312
Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major candidate for the blood-stage malaria vaccine. Genetic polymorphisms of global pfama-1suggest that the genetic diversity of the gene can disturb effective vaccine development targeting this antigen. This study was conducted to explore the genetic diversity and gene structure of pfama-1 among P. falciparum isolates collected in the Khyber Pakhtunkhwa (KP) province of Pakistan. A total of 19 full-length pfama-1 sequences were obtained from KP-Pakistan P. falciparum isolates, and genetic polymorphism and natural selection were investigated. KP-Pakistan pfama-1 exhibited genetic diversity, wherein 58 amino acid changes were identified, most of which were located in ectodomains, and domains I, II, and III. The amino acid changes commonly found in the ectodomain of global pfama-1 were also detected in KP-Pakistan pfama-1. Interestingly, 13 novel amino acid changes not reported in the global population were identified in KP-Pakistan pfama-1. KP-Pakistan pfama-1 shared similar levels of genetic diversity with global pfama-1. Evidence of natural selection and recombination events were also detected in KP-Pakistan pfama-1.
6.Integrative Omics Reveals Metabolic and Transcriptomic Alteration of Nonalcoholic Fatty Liver Disease in Catalase Knockout Mice
Jinhyuk NA ; Soo An CHOI ; Adnan KHAN ; Joo Young HUH ; Lingjuan PIAO ; Inah HWANG ; Hunjoo HA ; Youngja H PARK
Biomolecules & Therapeutics 2019;27(2):134-144
The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased with the incidence of obesity; however, the underlying mechanisms are unknown. In this study, high-resolution metabolomics (HRM) along with transcriptomics were applied on animal models to draw a mechanistic insight of NAFLD. Wild type (WT) and catalase knockout (CKO) mice were fed with normal fat diet (NFD) or high fat diet (HFD) to identify the changes in metabolic and transcriptomic profiles caused by catalase gene deletion in correspondence with HFD. Integrated omics analysis revealed that cholic acid and 3β, 7α-dihydroxy-5-cholestenoate along with cyp7b1 gene involved in primary bile acid biosynthesis were strongly affected by HFD. The analysis also showed that CKO significantly changed all-trans-5,6-epoxy-retinoic acid or all-trans-4-hydroxy-retinoic acid and all-trans-4-oxo-retinoic acid along with cyp3a41b gene in retinol metabolism, and α/γ-linolenic acid, eicosapentaenoic acid and thromboxane A2 along with ptgs1 and tbxas1 genes in linolenic acid metabolism. Our results suggest that dysregulated primary bile acid biosynthesis may contribute to liver steatohepatitis, while up-regulated retinol metabolism and linolenic acid metabolism may have contributed to oxidative stress and inflammatory phenomena in our NAFLD model created using CKO mice fed with HFD.
7.Effect of Abiotic Factors on Fumosorinone Production from Cordyceps fumosorosea via Solid-State Fermentation
Tahir KHAN ; Dong-Hai HOU ; Jin-Na ZHOU ; Yin-Long YANG ; Hong YU
Mycobiology 2023;51(3):157-163
Cordyceps fumosorosea is an important species in the genus of Cordyceps, containing a variety of bioactive compounds, including fumosorinone (FU). This study was a ground-breaking assessment of FU levels in liquid and solid cultures. The present study focused on the impacts of solid-state fermentation (SSF) using solid substrates (wheat, oat, and rice), as well as the effects of fermentation parameters (pH, temperature, and incubation period), on the generation of FU. All the fermentation parameters had significant effects on the synthesis of FU. In a study of 25 °C, 5.5 pH, and 21 days of incubation period combinations calculated -to give maximal FU production, it was found that the optimal values were 25 °C, 5.5 pH, and 21 days, respectively. In a solid substrate medium culture, FU could be produced from SSF. At 30 days, a medium composed of rice yielded the most FU (798.50 mg/L), followed by a medium composed of wheat and oats (640.50 and 450.50 mg/L), respectively. An efficient method for increasing FU production on a large scale could be found in this approach. The results of this study might have multiple applications in different industrial fermentation processes.