1.Hearing loss prevalence and burden of disease in China: Findings from provincial-level analysis.
Yu WANG ; Yang XIE ; Minghao WANG ; Mengdan ZHAO ; Rui GONG ; Ying XIN ; Jia KE ; Ke ZHANG ; Shaoxing ZHANG ; Chen DU ; Qingchuan DUAN ; Fang WANG ; Tao PAN ; Furong MA ; Xiangyang HU
Chinese Medical Journal 2025;138(1):41-48
BACKGROUND:
Without timely and effective rehabilitation, hearing loss may profoundly affect human life quality. China has a large population of hearing-impaired individuals, which imposes a heavy health burden on society. Moreover, this population is projected to increase rapidly owing to China's aging society.
METHODS:
We used data from a population-representative epidemiological investigation of hearing loss and ear diseases in four Chinese provinces. We estimated the national prevalence using multiple linear regression of the age-group proportions and prevalence in 31 provinces with clustering analysis. We used years lived with disability (YLDs) to analyze the disease burden and forecasted the prevalence of hearing loss by 2060 in China.
RESULTS:
An estimated 115 million people had moderate-to-complete hearing loss in 2015 across the 31 provinces of China (8.4% of 1.37 billion people). Of these, 85.7% were older than age 50 years (99 million people) and 2.4% were younger than 20 years old (2.8 million people). Of all YLDs attributable to hearing loss, 68.9% were attributable to moderate-to-complete cases. By 2060, a projected 242 million people in China will have moderate-to-complete hearing loss, a 110.0% increase from 2015.
CONCLUSIONS
The hearing loss prevalence in China is high. Population aging and socioeconomic factors substantially affect the prevalence and severity of hearing loss and the disease burden. The prevalence and severity of hearing loss are unevenly distributed across different provinces. Future public health policies should take these trends and regional variations into account.
Humans
;
China/epidemiology*
;
Hearing Loss/epidemiology*
;
Prevalence
;
Middle Aged
;
Male
;
Female
;
Adult
;
Aged
;
Adolescent
;
Young Adult
;
Child
;
Child, Preschool
;
Infant
;
Aged, 80 and over
;
Cost of Illness
2.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
3.Chain mediating role of family care and emotional management between social support and anxiety in primary school students.
Zhan-Wen LI ; Jian-Hui WEI ; Ke-Bin CHEN ; Xiao-Rui RUAN ; Yu-Ting WEN ; Cheng-Lu ZHOU ; Jia-Peng TANG ; Ting-Ting WANG ; Ya-Qing TAN ; Jia-Bi QIN
Chinese Journal of Contemporary Pediatrics 2025;27(10):1176-1184
OBJECTIVES:
To investigate the chain mediating role of family care and emotional management in the relationship between social support and anxiety among rural primary school students.
METHODS:
A questionnaire survey was conducted among students in grades 4 to 6 from four counties in Hunan Province. Data were collected using the Social Support Rating Scale, Family Care Index Scale, Emotional Intelligence Scale, and Generalized Anxiety Disorder -7. Logistic regression analysis was used to explore the influencing factors of anxiety symptoms. Mediation analysis was conducted to assess the chain mediating effects of family care and emotional management between social support and anxiety.
RESULTS:
A total of 4 141 questionnaires were distributed, with 3 874 valid responses (effective response rate: 93.55%). The prevalence rate of anxiety symptoms among these students was 9.32% (95%CI: 8.40%-10.23%). Significant differences were observed in the prevalence rates of anxiety symptoms among groups with different levels of social support, family functioning, and emotional management ability (P<0.05). The total indirect effect of social support on anxiety symptoms via family care and emotional management was significant (β=-0.137, 95%CI: -0.167 to -0.109), and the direct effect of social support on anxiety symptoms remained significant (P<0.05). Family care and emotional management served as significant chain mediators in the relationship between social support and anxiety symptoms (β=-0.025,95%CI:-0.032 to -0.018), accounting for 14.5% of the total effect.
CONCLUSIONS
Social support can directly affect anxiety symptoms among rural primary school students and can also indirectly influence anxiety symptoms through the chain mediating effects of family care and emotional management. These findings provide scientific evidence for the prevention of anxiety in primary school students from multiple perspectives.
Humans
;
Female
;
Male
;
Social Support
;
Anxiety/etiology*
;
Child
;
Students/psychology*
;
Emotions
;
Logistic Models
4.A preclinical evaluation and first-in-man case for transcatheter edge-to-edge mitral valve repair using PulveClip® transcatheter repair device.
Gang-Jun ZONG ; Jie-Wen DENG ; Ke-Yu CHEN ; Hua WANG ; Fei-Fei DONG ; Xing-Hua SHAN ; Jia-Feng WANG ; Ni ZHU ; Fei LUO ; Peng-Fei DAI ; Zhi-Fu GUO ; Yong-Wen QIN ; Yuan BAI
Journal of Geriatric Cardiology 2025;22(2):265-269
5.Design, synthesis, and antitumor activity of novel thioheterocyclic nucleoside derivatives by suppressing the c-MYC pathway.
Xian-Jia LI ; Ke-Xin HUANG ; Ke-Xin WANG ; Ru LIU ; Dong-Chao WANG ; Yu-Ru LIANG ; Er-Jun HAO ; Yang WANG ; Hai-Ming GUO
Acta Pharmaceutica Sinica B 2025;15(7):3685-3707
Eightly-four novel thioheterocyclic nucleoside derivatives were designed, synthesized, and evaluated for antitumor activity in vitro and in vivo. Most of the compounds inhibited the growth of HCT116 and HeLa cancer cells in vitro, among them 33a and 36b exhibited potent activity against HCT116 cells (IC50 = 0.27 and 0.49 μmol/L, respectively). Both compounds 33a and 36b inhibited cell metastasis, arrested the cell cycle in the G2/M phase, and induced apoptosis in vitro. Mechanistic studies revealed that 33a and 36b increased ROS levels, led to DNA damage, ER stress, and mitochondrial dysfunction, and inhibited autophagy in HCT116 cells. Biological information analysis, RNA-sequencing, Gene Set Enrichment Analysis (GSEA), drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and SPR experiments identified that compounds 33a and 36b showed antitumor activity by suppressing the c-MYC pathway. c-MYC silencing assays indicated that c-MYC proteins participated in 33a-mediated anticancer activities in HCT116 cells. More importantly, compound 33a presented favorable pharmacokinetic properties in mice (T 1/2 = 6.8 h) and showed significant antitumor efficacy in vivo without obvious toxicity, showing promising potential for further clinical development.
6.Csde1 Mediates Neurogenesis via Post-transcriptional Regulation of the Cell Cycle.
Xiangbin JIA ; Wenqi XIE ; Bing DU ; Mei HE ; Jia CHEN ; Meilin CHEN ; Ge ZHANG ; Ke WANG ; Wanjing XU ; Yuxin LIAO ; Senwei TAN ; Yongqing LYU ; Bin YU ; Zihang ZHENG ; Xiaoyue SUN ; Yang LIAO ; Zhengmao HU ; Ling YUAN ; Jieqiong TAN ; Kun XIA ; Hui GUO
Neuroscience Bulletin 2025;41(11):1977-1990
Loss-of-function variants in CSDE1 have been strongly linked to neuropsychiatric disorders, yet the precise role of CSDE1 in neurogenesis remains elusive. In this study, we demonstrate that knockout of Csde1 during cortical development in mice results in impaired neural progenitor proliferation, leading to abnormal cortical lamination and embryonic lethality. Transcriptomic analysis revealed that Csde1 upregulates the transcription of genes involved in the cell cycle network. Applying a dual thymidine-labelling approach, we further revealed prolonged cell cycle durations of neuronal progenitors in Csde1-knockout mice, with a notable extension of the G1 phase. Intersection with CLIP-seq data demonstrated that Csde1 binds to the 3' untranslated region (UTR) of mRNA transcripts encoding cell cycle genes. Particularly, we uncovered that Csde1 directly binds to the 3' UTR of mRNA transcripts encoding Cdk6, a pivotal gene in regulating the transition from the G1 to S phases of the cell cycle, thereby maintaining its stability. Collectively, this study elucidates Csde1 as a novel regulator of Cdk6, sheds new light on its critical roles in orchestrating brain development, and underscores how mutations in Csde1 may contribute to the pathogenesis of neuropsychiatric disorders.
Animals
;
Neurogenesis/genetics*
;
Cell Cycle/genetics*
;
Mice, Knockout
;
Mice
;
Neural Stem Cells/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Cyclin-Dependent Kinase 6/genetics*
;
Cell Proliferation
;
3' Untranslated Regions
;
Cerebral Cortex/embryology*
;
RNA-Binding Proteins
;
Mice, Inbred C57BL
7.Placebo response in sham acupuncture therapy trials for simple obesity: A systematic review and meta-analysis.
Ke-Jia LIU ; Rui-Min JIAO ; Jing JI ; Wei-Wei YAO ; Chao-Ru HAN ; Xin-Yu ZHAO ; Jing-Jie ZHAO
Journal of Integrative Medicine 2025;23(3):264-273
BACKGROUND:
Acupuncture has shown potential therapeutic benefits for individuals with simple obesity. However, some researchers argue that some of the effectiveness of acupuncture may be due to the placebo response.
OBJECTIVE:
To understand the placebo response of acupuncture treatment in simple obesity, a systematic review and meta-analysis was designed based on the comparison between sham acupuncture before and after treatment.
SEARCH STRATEGY:
Eight databases (PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure, Wanfang Database, China Biology Medicine Database, and Chinese Scientific Journals Database) were searched from inception to August 1, 2023. The MeSH search terms comprised obesity and acupuncture.
INCLUSION CRITERIA:
Randomized controlled trials (RCTs) using sham or placebo acupuncture as a control in treating obesity were enrolled.
DATA EXTRACTION AND ANALYSIS:
Two researchers independently extracted data, and the results were cross-checked after completion. Each RCT's detailed sham/placebo acupuncture treatment protocol was assessed according to the SHam Acupuncture REporting guidelines. The revised Cochrane risk-of-bias tool for randomized trials and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system were used to determine the risk of bias and quality of evidence, respectively. Body mass index (BMI) was defined as the primary outcome. Anthropometric parameters and laboratory test parameters related to obesity were defined as secondary outcomes. We used standardized mean difference (SMD) with 95% confidence interval (CI) to calculate treatment effects of outcomes.
RESULTS:
Fifteen RCTs with a total of 1250 patients were included. The BMI significantly decreased after treatment in the sham acupuncture group compared to baseline (SMD 0.37, 95% CI 0.09-0.66; I2 = 81%, random model; P < 0.01). Treatment duration (P = 0.02) and other interventions significantly impacted the placebo response rate (P = 0.00).
CONCLUSION
The placebo response of sham acupuncture was strong in the RCTs for simple obesity, and the effect sizes differed between various outcomes. The treatment duration and other interventions emerged as potential influencing factors for the placebo response of sham acupuncture. Please cite this article as: Liu KJ, Jiao RM, Ji J, Yao WW, Han CR, Zhao XY, Zhao JJ. Placebo response in sham acupuncture therapy trials for simple obesity: a systematic review and meta-analysis. J Integr Med. 2025; 23(3): 264-273.
Humans
;
Acupuncture Therapy/methods*
;
Obesity/therapy*
;
Placebo Effect
;
Placebos
;
Randomized Controlled Trials as Topic
8.From pioneering to innovation: A comprehensive review of acupuncture anesthesia in cardiothoracic surgeries.
Xin-di WU ; Xu-Qiang WEI ; Tong-Yu CHEN ; Wen-Xiong ZHOU ; Ke WANG ; Jia ZHOU
Journal of Integrative Medicine 2025;23(6):623-629
The evolution of acupuncture anesthesia (AA) has spanned six decades. Cardiothoracic surgery serves as a representative case study to illustrate this evolution. Reflecting on its historical development, the use of AA in cardiothoracic surgery has advanced from basic AA procedures in the 1960s to combined acupuncture and drug anesthesia techniques in the early 1980s. Since 2005, the innovative use of non-intubation AA combined anesthesia has been implemented extensively in cardiothoracic surgery. As the medical industry continues to evolve, the techniques applied in AA have expanded to encompass the entire perioperative period in cardiothoracic surgery, leading to the introduction of the concept of modern AA. The use of AA in cardiothoracic surgery exemplifies the ongoing advances and integration of traditional Chinese and Western medicine. Moving forward, it is imperative to enhance the theoretical framework of AA through the execution of rigorous multicenter clinical trials, to further strengthen the body of evidence supporting evidence-based medicine, and to finally explore the underlying mechanisms of AA. Please cite this article as: Wu XD, Wei XQ, Chen TY, Zhou WX, Wang K, Zhou J. From pioneering to innovation: A comprehensive review of acupuncture anesthesia in cardiothoracic surgeries. J Integr Med. 2025; 23(6):623-629.
Humans
;
Acupuncture Analgesia/methods*
;
Acupuncture Therapy/methods*
;
Cardiac Surgical Procedures
;
Anesthesia/methods*
;
Thoracic Surgical Procedures
9.Clinical application of MALDI-TOF MS for homology analysis of Acineto-bacter baumannii
Tian ZHENG ; Ke ZHOU ; Lei ZHOU ; Yu-Qi YANG ; Xiao CHEN ; Lu BAI ; Jia-Yun LIU
Chinese Journal of Infection Control 2024;23(1):104-111
Objective To evaluate the clinical application value of matrix-assisted laser desorption ionization time-of-flight mass spectrometry(MALDI-TOF MS)in analyzing the homology of Acinetobacter baumannii(AB).Methods After excluding repetitive strains from multiple specimens of the same patient or environment,a total of 46 AB strains isolated from patients'sputum and environmental specimens of neurological intensive care unit(ICU)in a tertiary first-class general hospital from May 2020 to February 2021 were collected.Strains were detected by VITEK-MS mass spectrometer.Cluster analysis was performed by SARAMIS Premium software,and verified by multilocus sequence typing(MLST).Results Cluster analysis and comparison of MALDI-TOF MS and MLST found that among the 46 AB strains,39 were the type MS-a of MALDI-TOF MS,of which 22 strains were the clus-ter MT-A of MLST,including ST208(n=3),ST540(n=3),ST195(n=8),ST369(n=5),ST136(n=1),ST436(n=1)and ST1893(n=1);16 strains were MT-B,including type ST381(n=4),type ST469(n=11),and type ST938(n=1);one strain was cluster MT-C(ST1821);one strain of type MS-b was ST381;two strains of type MS-c were ST369;one strain of type MS-d was ST195;two strains of type MS-e were ST540 and ST369,respectively;one strain of type MS-f was STN1.Conclusion As a homology analysis method,MALDI-TOF MS still has certain limitations such as low consistency with MLST results,low resolution and specificity,thus cannot replace MLST technology.
10.Application and Prospects of Polygenic Risk Score (PRS) in Genetic Disease Research: a Review of Data Analysis Methods
Shu-Xin HE ; Chang-Shun YU ; Xiao-Dong JIA ; Jian-Chun CHEN ; Ke-Qiang YAN
Progress in Biochemistry and Biophysics 2024;51(8):1797-1808
Lower-cost genotyping technology has promoted the generation of large genetic datasets with the evolving next-generation sequencing technology. The emergence of genome-wide association studies (GWAS) has facilitated researchers’ understanding of common complex diseases. GWAS refers to finding the sequence variations present in the human genome and screening out disease-related single nucleotide polymorphisms (SNPs). These SNPs are considered as the basis for assessing the stability of complex diseases. However, a single variation is not sufficient to assess an individual’s risk of disease. Polygenic risk score (PRS) is an emerging genetic data analysis method for quantitatively estimating an individual’s genetic risk for complex diseases by comprehensively considering multiple genetic variation sites. A single-value estimate of an individual’s genetic risk for a certain phenotype can be calculated as the cumulative impact of multiple genetic variants by building a PRS model. The finally expected risk score is weighted by the strength and direction of association of each SNP with the phenotype based on the number of alleles carried by each SNP. With the continuous development of various PRS calculation methods and the constant accumulation of genomic data, PRS has received widespread attention in the field of genetics. So far, quite a few studies at home and abroad have shown that PRS is valuable in risk prediction of different types of human traits or complex diseases, and its effectiveness has been further verified in clinical applications. At present, many studies have established PRS models based on GWAS summary statistics to quantify the genetic risk of susceptibility loci and clinical characteristics on diseases such as lung cancer, breast cancer, coronary heart disease, diabetes and Alzheimer’s disease. The disease-susceptible populations can be recognized through comparing the relative risk and absolute risk of the disease in different risk groups according to the population risk stratification results. Additionally, individual-level genotype data and omics data can also be used as data sources for PRS analysis research, especially the latter can dynamically reflect the short-term or long-term effects of environmental factors on human gene expression, and has potential application value in building early warning models to assess health risks. Since the calculation of PRS involves a large amount of genomic data analysis, there are big differences in the methods for data selection, model building and validation. Different PRS construction methods and software have different performances in disease risk prediction, and even the performance of same algorithm varies across diseases. It is worth noting that the PRS model often needs to be re-evaluated and verified for different groups of people, because PRS is affected by race and region. This review combines currently published PRS-related research and algorithms to describe the basic principles of PRS, compares their construction and verification methods, and discusses their applications and prospects. As a powerful genetic risk assessment tool, PRS has great potential in analyzing the genetic code of complex diseases and achieving precise diagnosis and personalized treatment.

Result Analysis
Print
Save
E-mail