1.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
2.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
3.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
4.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
5.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
6.Frequency and clinical features of deficient mismatch repair in ovarian clear cell and endometrioid carcinoma
Tamaki TANAKA ; Kazuhiro TAKEHARA ; Natsumi YAMASHITA ; Mika OKAZAWA-SAKAI ; Kazuya KURAOKA ; Norihiro TERAMOTO ; Kenichi TAGUCHI ; Katsushige YAMASHIRO ; Hidenori KATO ; Tomoya MIZUNOE ; Rie SUZUKI ; Dan YAMAMOTO ; Arisa UEKI ; Toshiaki SAITO
Journal of Gynecologic Oncology 2022;33(5):e67-
Objective:
To clarify the frequency of deficient mismatch repair (dMMR) in Japanese ovarian cancer patients, we examined microsatellite instability (MSI) status and immunohistochemistry (IHC) subtypes, including endometrioid carcinoma (EMC), clear cell carcinoma (CCC), or a mixture of both (Mix).
Methods:
We registered 390 patients who were diagnosed with EMC/CCC/Mix between 2006 and 2015 and treated at seven participating facilities. For 339 patients confirmed eligible by the Central Pathological Review Board, MSI, IHC, and MutL homolog 1 methylation analyses were conducted. The tissues of patients with Lynch syndrome (LS)-related cancer histories, such as colorectal and endometrial cancer, were also investigated.
Results:
MSI-high (MSI-H) status was observed in 2/217 CCC (0.9%), 10/115 EMC (8.7%), and 1/4 Mix (25%). Additionally, loss of MMR protein expression (LoE-MMR) was observed in 5/219 (2.3%), 16/115 (14.0%), and 1/4 (25%) patients with CCC, EMC, and Mix, respectively. Both MSI-H and LoE-MMR were found significantly more often in EMC (p<0.001). The median (range) ages of patients with MMR expression and LoE-MMR were 54 (30–90) and 46 (22–76) (p=0.002), respectively. In the multivariate analysis, advanced stage and histological type were identified as prognostic factors.
Conclusion
The dMMR rate for EMC/CCC was similar to that reported in Western countries. In Japan, it is assumed that the dMMR frequency is higher because of the increased proportion of CCC.
7.Reduced Intravenous Fluorescein Dose for Upper and Lower Gastrointestinal Tract Probe-Based Confocal Laser Endomicroscopy
Kazuya INOKI ; Seiichiro ABE ; Yusaku TANAKA ; Koji YAMAMOTO ; Daisuke HIHARA ; Ryoji ICHIJIMA ; Yukihiro NAKATANI ; HsinYu CHEN ; Hiroyuki TAKAMARU ; Masau SEKIGUCHI ; Masayoshi YAMADA ; Taku SAKAMOTO ; Satoru NONAKA ; Haruhisa SUZUKI ; Shigetaka YOSHINAGA ; Ichiro ODA ; Takahisa MATSUDA ; Yutaka SAITO
Clinical Endoscopy 2021;54(3):363-370
Background/Aims:
Probe-based confocal laser endomicroscopy (pCLE) requires the administration of intravenous (IV) fluorescein. This study aimed to determine the optimal dose of IV fluorescein for both upper and lower gastrointestinal (GI) tract pCLE.
Methods:
Patients 20 to 79 years old with gastric high-grade dysplasia (HGD) or colorectal neoplasms (CRNs) were enrolled in the study. The dose de-escalation method was employed with five levels. The primary endpoint of the study was the determination of the optimal dose of IV fluorescein for pCLE of the GI tract. The reduced dose was determined based on off-line reviews by three endoscopists. An insufficient dose of fluorescein was defined as the dose of fluorescein with which the pCLE images were not deemed to be visible. If all three endoscopists determined that the tissue structure was visible, the doses were de-escalated.
Results:
A total of 12 patients with gastric HGD and 12 patients with CRNs were enrolled in the study. Doses were de-escalated to 0.5 mg/kg of fluorescein for both non-neoplastic duodenal and colorectal mucosa. All gastric HGD or CRNs were visible with pCLE with IV fluorescein at 0.5 mg/kg.
Conclusions
In the present study, pCLE with IV fluorescein 0.5 mg/kg was adequate to visualize the magnified structure of both the upper and lower GI tract.
8.Reduced Intravenous Fluorescein Dose for Upper and Lower Gastrointestinal Tract Probe-Based Confocal Laser Endomicroscopy
Kazuya INOKI ; Seiichiro ABE ; Yusaku TANAKA ; Koji YAMAMOTO ; Daisuke HIHARA ; Ryoji ICHIJIMA ; Yukihiro NAKATANI ; HsinYu CHEN ; Hiroyuki TAKAMARU ; Masau SEKIGUCHI ; Masayoshi YAMADA ; Taku SAKAMOTO ; Satoru NONAKA ; Haruhisa SUZUKI ; Shigetaka YOSHINAGA ; Ichiro ODA ; Takahisa MATSUDA ; Yutaka SAITO
Clinical Endoscopy 2021;54(3):363-370
Background/Aims:
Probe-based confocal laser endomicroscopy (pCLE) requires the administration of intravenous (IV) fluorescein. This study aimed to determine the optimal dose of IV fluorescein for both upper and lower gastrointestinal (GI) tract pCLE.
Methods:
Patients 20 to 79 years old with gastric high-grade dysplasia (HGD) or colorectal neoplasms (CRNs) were enrolled in the study. The dose de-escalation method was employed with five levels. The primary endpoint of the study was the determination of the optimal dose of IV fluorescein for pCLE of the GI tract. The reduced dose was determined based on off-line reviews by three endoscopists. An insufficient dose of fluorescein was defined as the dose of fluorescein with which the pCLE images were not deemed to be visible. If all three endoscopists determined that the tissue structure was visible, the doses were de-escalated.
Results:
A total of 12 patients with gastric HGD and 12 patients with CRNs were enrolled in the study. Doses were de-escalated to 0.5 mg/kg of fluorescein for both non-neoplastic duodenal and colorectal mucosa. All gastric HGD or CRNs were visible with pCLE with IV fluorescein at 0.5 mg/kg.
Conclusions
In the present study, pCLE with IV fluorescein 0.5 mg/kg was adequate to visualize the magnified structure of both the upper and lower GI tract.
9.Hyperfractionated radiotherapy for re-irradiation of recurrent esophageal cancer
Kazuya TAKEDA ; Haruo MATSUSHITA ; Rei UMEZAWA ; Takaya YAMAMOTO ; Yojiro ISHIKAWA ; Noriyoshi TAKAHASHI ; Yu SUZUKI ; Keiichi JINGU
Radiation Oncology Journal 2021;39(4):265-269
Purpose:
Re-irradiation is a treatment option for recurrent esophageal cancer patients with a history of radiotherapy, but there is a risk of severe late adverse effects. This study focused on the efficacy and safety of re-irradiation using hyperfractionated radiotherapy.
Materials and Methods:
Twenty-six patients who underwent re-irradiation by the hyperfraction technique using twice-daily irradiation of 1.2 Gy per fraction for recurrent esophageal cancer were retrospectively included in this study. The overall survival period after the start of secondary radiotherapy and the occurrence of late adverse effects were investigated.
Results:
Of 26 patients, 21 (81%) received re-irradiation with definitive intention and 21 (81%) underwent concurrent chemotherapy. The median re-irradiation dose was 60 Gy in 50 fractions in 25 treatment days, and the median accumulated irradiation dose in equivalent dose in 2 Gy per fraction was 85.4 Gy with an α/β value of 3. The median interval between two courses of radiotherapy was 21.0 months. The median overall survival period was 15.8 months and the 1-year and 3-year overall survival rates were 64.3% and 28.3%, respectively. Higher dose of re-irradiation and concurrent chemotherapy significantly improved survival (p < 0.001 and p = 0.019, respectively). Severe late adverse effects with the Common Terminology Criteria for Adverse Events grade 3 or higher were observed in 5 (19.2%) patients, and 2 (7.7%) of them developed a grade 5 late adverse effect.
Conclusion
High-dose re-irradiation using a hyperfractionated schedule with concurrent chemotherapy might be related to good prognosis, while the rate of late severe adverse effects is not high compared with the rates in past reports.
10.Stent-Graft Re-expansion Following Axillo-Bifemoral Bypass : A Case of Stent Graft Collapse due to Acute Type B Aortic Dissection
Shuji NAGATOMI ; Hiroyuki YAMAMOTO ; Kenji TOYOKAWA ; Kousuke MUKAIHARA ; Kazuya TERAZONO ; Yuki OGATA ; Yutaka IMOTO
Japanese Journal of Cardiovascular Surgery 2019;48(3):206-209
We describe a rare complication and treatment progression that occurred in a 64-year-old man with an aortic abdominal aneurysm (AAA) that had been treated by endovascular aneurysm repair (EVAR). He had undergone EVAR to treat an infra-renal type AAA 21 months previously and returned to the emergency department with back pain. Contrast-enhanced computed tomography (CT) revealed acute type B aortic dissection, so he was admitted and conservative medical management was started. Acute stomachache and limb pain appeared on hospital day 7, which prevented him from moving his lower limbs. The main body of the stent graft had collapsed, blocking blood flow, and contrast was not found in arteries from the collapsed stent graft portion to the knee level on emergency contrast CT images of the leg. His legs were revascularized by an extra-anatomical right axial-bilateral external iliac bypass. His symptoms disappeared and reperfusion injury was avoided. The collapsed stent graft had retained its original shape at 11 and 18 days after surgery. Furthermore, follow-up CT 4.5 years later showed that the stent graft retained its original form.


Result Analysis
Print
Save
E-mail