1.Effect of Yang-Reinforcing and Blood-Activating Therapy on the Long-Term Prognosis for Dilated Cardio-myopathy Patients with Yang Deficiency and Blood Stasis Syndrome:A Retrospective Cohort Study
Shiyi TAO ; Jun LI ; Lintong YU ; Ji WU ; Yuqing TAN ; Xiao XIA ; Fuyuan ZHANG ; Tiantian XUE ; Xuanchun HUANG
Journal of Traditional Chinese Medicine 2026;67(1):53-59
ObjectiveTo evaluate the impact of yang-reinforcing and blood-activating therapy on the long-term prognosis for patients with dilated cardiomyopathy (DCM) of yang deficiency and blood stasis syndrome. MethodsA retrospective cohort study was conducted involving 371 DCM patients with yang deficiency and blood stasis syndrome. The yang-reinforcing and blood-activating therapy was defined as the exposure factor. Patients were categorized into exposure group (186 cases) and non-exposure group (185 cases) according to whether they received yang-reinforcing and blood-activating therapy combined with conventional western medicine for 6 months or longer. The follow-up period was set at 48 months, and the Kaplan-Meier survival analysis was used to assess the cumulative incidence of major adverse cardiovascular events (MACE) in both groups. Cox regression analysis was used to explore the impact of yang-reinforcing and blood-activating therapy on the risk of MACE, and subgroup analysis was performed. Changes in traditional Chinese medicine (TCM) syndrome score, left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular end-diastolic diameter (LVEDD), and Minnesota Living with Heart Failure Questionnaire (MLHFQ) score were compared between groups at the time of first combined use of yang-reinforcing and blood-activating therapy (before treatment) and 1 year after receiving the therapy (after treatment). ResultsMACE occurred in 31 cases (16.67%) in the exposure group and 47 cases (25.41%) in the non-exposure group. The cumulative incidence of MACE in the exposure group was significantly lower than that in the non-exposure group [HR=0.559, 95%CI(0.361,0.895), P=0.014]. Cox regression analysis showed that yang-reinforcing and blood-activating therapy was an independent factor for reducing the risk of MACE in DCM patients [HR=0.623, 95%CI(0.396,0.980), P=0.041], and consistent results were observed in different subgroups. Compared with pre-treatment, the exposure group showed decreased TCM syndrome score and MLHFQ score, reduced LVEDD, and increased LVEF and LVFS after treatment (P<0.05); in the non-exposure group, TCM syndrome score decreased, LVEF and LVFS increased, and LVEDD reduced after treatment (P<0.05). After treatment, the exposure group had higher LVEF and LVFS, smaller LVEDD, and lower TCM syndrome score and MLHFQ score compared with the non-exposure group (P<0.05). ConclusionCombining yang-reinforcing and blood-activating therapy with conventional western medicine can reduce the risk of MACE in DCM patients with yang deficiency and blood stasis syndrome, meanwhile improving their clinical symptoms, cardiac function, and quality of life.
2.Empirical study of input, output, outcome and impact of community-based rehabilitation stations
Xiayao CHEN ; Ying DONG ; Xue DONG ; Zhongxiang MI ; Jun CHENG ; Aimin ZHANG ; Didi LU ; Jun WANG ; Jude LIU ; Qianmo AN ; Hui GUO ; Xiaochen LIU ; Zefeng YU
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):83-89
ObjectiveTo investigate the present situation of input, output, outcome and impact of all registered community-based rehabilitation stations in Inner Mongolia in China, and analyze how the input predict the output, outcome and impact. MethodsFrom March 1st to April 30th, 2025, a questionnaire survey was conducted on all registered community-based rehabilitation stations in Inner Mongolia, covering four dimensions: input, output, outcome and impact. A total of 1 365 questionnaires were distributed. The input included four items: laws and policies, human resources, equipment and facilities, and rehabilitation information management. The output included two items: technical paths and benefits/effectiveness. The outcome included three items: coverage rates, rehabilitation interventions and functional results. The impact included two items: health and sustainability. Each item contained several questions, all of which were described in a positive way. Each question was scored from one to five. A lower score indicated that the situation of the community-based rehabilitation station was more in line with the content described in the question. Regression analysis was performed using the total score of each item of input dimension as independent variables, and the total scores of the output, outcome and impact dimensions as dependent variables. ResultsA total of 1 262 valid questionnaires were collected. The mean values of input, output, outcome and impact of community-based rehabilitation stations were 1.827 to 1.904, with coefficient of variation of 45.892% to 49.239%. The regression analysis showed that, rehabilitation information management, human resources, and laws and policies significantly predicted the output dimension (R² = 0.910, P < 0.001). Meanwhile, all four items in the input dimension predicted both the outcome (R² = 0.850, P < 0.001) and impact dimensions (R² = 0.833, P < 0.001). ConclusionInput, output, outcome and impact of the community-based rehabilitation stations in Inner Mongolia were generally in line with the content of the questions, although some imbalances were observed. Additionally, the input of community-based rehabilitation stations could significantly predict their output, outcome and impact.
3.Traditional Chinese Medicine in Treatment of Chronic Atrophic Gastritis by Regulating PI3K/Akt Signaling Pathway:A Review
Yuxue DING ; Zhiwei SU ; Juan XUE ; Jun SUN ; Chunyan JI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):307-315
Chronic atrophic gastritis (CAG) is a digestive system disease characterized by the reduction and atrophy of the intrinsic glands of the gastric mucosa. This disease is closely related to risk factors such as Helicobacter pylori (Hp) infection,long-term unhealthy eating habits and lifestyle. As CAG is a key link in the development of gastric cancer,effectively preventing its deterioration is of great significance for the prevention of gastric cancer. At present,Western medicine mainly uses symptomatic treatments such as eradicating Hp,protecting gastric mucosa, and promoting gastrointestinal motility. However, long-term use is prone to drug resistance and cannot reverse limitations such as gland atrophy, making it urgent to explore new intervention strategies. In recent years,with the deepening of CAG mechanism research,the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway,as one of the classic signaling pathways,plays a significant role in the occurrence and development of CAG,while its systematic summary is still blank. Based on the regulatory advantages of "multi-target,multi-pathway,and low toxicity",traditional Chinese medicine can improve the pathological process of CAG by intervening in key nodes of the PI3K/Akt pathway. In this paper,the research progress of traditional Chinese medicine regulating PI3K/Akt pathway to improve CAG was systematically reviewed for the first time. The expression of PI3K/Akt signaling pathway in CAG was discussed,including the regulation of inflammation and oxidative stress,cell proliferation and apoptosis,and autophagy. The traditional Chinese medicine flavonoids,alkaloids,terpenoids and other compounds that regulate this pathway were summarized. The traditional Chinese medicine compounds mainly include classic famous prescriptions such as Xiaochaihu Tang,Banxia Xiexin Tang,Morodan concentrated pills,Elian granules and other traditional Chinese patent medicines,as well as empirical prescriptions such as modified Leweiyin formula,and Qiling prescription. This study aims to give full play to the advantages of traditional Chinese medicine and lay a solid foundation for the wide application and further development of CAG treatment,and provide new ideas for clinical research and drug research on CAG.
4.A Fitting Method for Photoacoustic Pump-probe Imaging Based on Phase Correction
Zhuo-Jun XIE ; Hong-Wen ZHONG ; Run-Xiang LIU ; Bo WANG ; Ping XUE ; Bin HE
Progress in Biochemistry and Biophysics 2025;52(2):525-532
ObjectivePhotoacoustic pump-probe imaging can effectively eliminate the interference of blood background signal in traditional photoacoustic imaging, and realize the imaging of weak phosphorescence molecules and their triplet lifetimes in deep tissues. However, background differential noise in photoacoustic pump-probe imaging often leads to large fitting results of phosphorescent molecule concentration and triplet lifetime. Therefore, this paper proposes a novel triplet lifetime fitting method for photoacoustic pump-probe imaging. By extracting the phase of the triplet differential signal and the background noise, the fitting bias caused by the background noise can be effectively corrected. MethodsThe advantages and feasibility of the proposed algorithm are verified by numerical simulation, phantom and in vivo experiments, respectively. ResultsIn the numerical simulation, under the condition of noise intensity being 10% of the signal amplitude, the new method can optimize the fitting deviation from 48.5% to about 5%, and has a higher exclusion coefficient (0.88>0.79), which greatly improves the fitting accuracy. The high specificity imaging ability of photoacoustic pump imaging for phosphorescent molecules has been demonstrated by phantom experiments. In vivo experiments have verified the feasibility of the new fitting method proposed in this paper for fitting phosphoometric lifetime to monitor oxygen partial pressure content during photodynamic therapy of tumors in nude mice. ConclusionThis work will play an important role in promoting the application of photoacoustic pump-probe imaging in biomedicine.
5.Traditional Chinese Medicine Intervenes in Non-alcoholic Fatty Liver Disease by Regulating TLR4 Signaling Pathway: A Review
Zhiwei SU ; Juan XUE ; Jun SUN ; Heng FAN ; Rui ZHU ; Chunyan JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):291-299
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease closely related to metabolism, which is mainly characterized by abnormal lipid deposition in hepatocytes. In recent years, with the increasing prevalence of obesity and metabolic syndrome, NAFLD has become one of the most common chronic diseases in the world. The pathogenesis of NAFLD is complex and varied, involving the cross-regulation of multiple signaling pathways such as glucose-lipid metabolism, oxidative stress, and inflammation. The TLR4 signaling pathway plays a key role in the development and progression of NAFLD, and abnormal activation of this pathway accelerates the deterioration of NAFLD by promoting the release of pro-inflammatory cytokines, inducing oxidative stress, and exacerbating insulin resistance. Studies have shown that traditional Chinese medicine (TCM) can regulate the TLR4 signaling pathway to alleviate the symptoms and pathological features of NAFLD. The present review summarizes the experimental research progress in the TCM regulation of the TLR4 signaling pathway in treating NAFLD in the past 5 years, covering a wide range of TCM active ingredients (such as polysaccharides, terpenoids, alkaloids, flavonoids) and compound prescriptions. The active ingredients and compound prescriptions of TCM can effectively ameliorate lipid metabolism disorders, reduce insulin resistance, regulate intestinal flora, and inhibit inflammation and oxidative stress by regulating the TLR4 signaling pathway via multiple targets and pathways, thus slowing down the progression of NAFLD. Through in-depth analysis of the pathological mechanisms of NAFLD and exploration of the potential of TLR4 signaling pathway as a therapeutic target, we can provide theoretical support for the application of TCM in the treatment of NAFLD, as well as new perspectives and directions for future clinical research and new drug development, thereby promoting the innovation and development of therapeutic strategies for NAFLD.
6.Sesquiterpene ZH-13 from Aquilariae Lignum Resinatum Improves Neuroinflammation by Regulating JNK Phosphorylation
Ziyu YIN ; Yun GAO ; Junjiao WANG ; Weigang XUE ; Xueping PANG ; Huiting LIU ; Yunfang ZHAO ; Huixia HUO ; Jun LI ; Jiao ZHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):139-145
ObjectiveTo study the pharmacological substances and mechanisms through which sesquiterpene ZH-13 from Aquilariae Lignum Resinatum improves neuroinflammation. MethodsBV-2 microglial cells were stimulated with lipopolysaccharide (LPS) to induce neuroinflammation. The cells were divided into the normal group, the model group, and the ZH-13 low- and high-dose treatment groups (10, 20 μmol·L-1). The model group was treated with 1 μmol·L-1 LPS. Cell viability was assessed using the cell proliferation and activity assay (CCK-8 kit). Nitric oxide (NO) release in the cell supernatant was measured using a nitric oxide kit (Griess method). The mRNA expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin-6 (IL-6) were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The phosphorylation of mitogen-activated protein kinase (MAPK) pathway proteins was assessed by Western blot. ResultsCompared with the model group, ZH-13 dose-dependently reduced NO release from BV-2 cells under LPS stimulation (P<0.05, P<0.01). In the 20 μmol·L-1 ZH-13 treatment group, the mRNA expression levels of IL-1β, TNF-α, iNOS, and IL-6 were significantly reduced compared to the model group (P<0.05, P<0.01). In both the low- and high-dose ZH-13 groups, the expression of the inflammatory factor TNF-α and the phosphorylation of c-Jun N-terminal kinase (JNK) in the upstream MAPK pathway were significantly reduced (P<0.05). After stimulation with the JNK agonist anisomycin (Ani), both low- and high-dose ZH-13 treatment groups showed reduced phosphorylation of JNK proteins compared to the Ani-treated group (P<0.01). ConclusionThe sesquiterpene compound ZH-13 from Aquilariae Lignum Resinatum significantly ameliorates LPS-induced neuroinflammatory responses in BV-2 cells by inhibiting excessive JNK phosphorylation and reducing TNF-α expression. These findings elucidate the pharmacological substances and mechanisms underlying the sedative and calming effects of Aquilariae Lignum Resinatum.
7.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
8.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
9.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
10.Guidelines for vaccination of kidney transplant candidates and recipients in China
Jian Zhang ; Jun Lin ; Weijie Zhang ; Xiaoming Ding ; Xiaopeng Hu ; Wujun Xue
Organ Transplantation 2025;16(2):177-190
In order to further standardize the vaccination of kidney transplant candidates and recipients in China, the Branch of Organ Transplantation of Chinese Medical Association has organized experts in kidney transplantation and infectious diseases. Based on the "Vaccination of Solid Organ Transplant Candidates and Recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice", and in combination with the clinical reality of infectious diseases and vaccination after organ transplantation in China, as well as referring to relevant recommendations from home and abroad in recent years, these guidelines are formulated from aspects such as epidemiology, types of vaccines, vaccination principles, target population, and specific vaccine administration. The "Guidelines for Vaccination of Kidney Transplant Candidates and Recipients in China" aims to provide theoretical reference for medical workers in the field of kidney transplantation in China, regarding the vaccination of kidney transplant candidates and recipients. It is expected to better guide the vaccination of kidney transplant candidates and recipients, reduce the risk of postoperative infection, and improve survival outcomes.

Result Analysis
Print
Save
E-mail