1.SEM observation on stem and leaf epidermis of three species in Rabolosia (Bl.) Hassk
Linxiang SHAO ; Julin YANG ; Shuiliang GUO ;
Chinese Traditional and Herbal Drugs 1994;0(10):-
Object To study the micro morphological characteristics of the leaf and stem epidermis of three species in Rabdosia (Bl ) Hassk Methods The leaf and stem epidermis of Rabdosia amethystoides (Benth ) Hara, R macrocalyx (Dann) Hara and R nervosa (Hemsl ) C Y Wu et H W Li were observed by scanning electron microscope (SEM) Results Some characteristics are same among three species, such as elliptical stoma and glandular scale which has four cells, but some characteristics are di fferent, such as the shape of epidermal cell, the distribution of nonglandular hair, the shape of stoma Conclusion The leaf and stem epidermal characteristics are obviously different among the three species, it provides the new reference to discriminate the plants of Rabdosia (Bl ) Hassk
2.Determination of number average molecular mass of chitosan-oligosaccharide by acetylacetone method
Baoqin HAN ; Xiaojuan WEI ; Zi FANG ; Wanshun LIU ; Julin YANG
Chinese Journal of Marine Drugs 2000;0(06):-
To determine the number average molecular mass of chitosan-oligosaccharide by u-sing the acetylacetone's method based on the color-producing reaction with amino terminal . Via the tests on the repetitiveness, accuracy and the stability, supposed this method was reliable. At the same time, the contrastive results of HPLC and the traditional K3Fe(CN)6 method indicate that the acetylacetone method was more suitable for the determination of chitosan-oligosaccharide molecular mass.
3.Research progress of lysophosphatidylcholines for liver diseases
Danjun SONG ; Jiaqi PAN ; Pengxu LI ; Zanbo CHU ; Da FENG ; Aiming LIU ; Julin YANG
Chinese Pharmacological Bulletin 2014;(12):1642-1645,1646
Lysophosphatidylcholines belong to a group of lipid components which have a variety of physiological functions. LPCs are known to be linked to metabolic disorders and cardio-vascular diseases,including diabetes,atherosclerosis and dyslip-idemia.LPCs are actively metabolized in liver,which is closely related with liver diseases and hepatotoxicity.The role of LPCs in liver diseases and hepatotoxicities has been extensively investi-gated recently.This review focuses on lysophosphatidylcholines as a biomarker for liver diseases,such as hepatic carcinoma, cholestasis,cirrhosis,hepatitis,and chemical hepatotoxicities, trying to lay a basis for investigation and therapeutics of liver dis-eases.
4.Preparation of chitosan/hydroxyapatite membrane and its effect on cell culture.
Julin YANG ; Changren ZHOU ; Ye TIAN ; Jinhuan TIAN
Journal of Biomedical Engineering 2009;26(3):580-584
Compound membranes of chitosan/hydroxyapatite were prepared by blending. The physical performance showed that the air-water contact angles decreased from chitosan's 103 degrees to chitosan/hydroxyapatite's 57 and the water adsorption rate increased slightly. When immersed into culture medium, the materials adsorbed Ca2+, and low crystalline hydroxyapatite deposited on the surface of the membranes. Chitosan/hydroxyapatite compound membranes could enhance the attachment and proliferation of mescenchymal stem cells (MSCs). After 12 days' induction on the materials, the alkaline phosphatase (ALP) activity value of MSCs on the compound membrane was 10.1, being much higher than 1.6 on chitosan membrane (P<0.01). All these results indicate that chitosan does not have very good affinity for MSCs, but the biocompatibility of chitosan can be apparently enhanced after mixing with hydroxyapatite. The compound membrane stimulates MSCs to differentiate into osteoblasts and it may be a good potential material for bone substitution.
Alkaline Phosphatase
;
metabolism
;
Animals
;
Bone Substitutes
;
pharmacology
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Chitosan
;
chemical synthesis
;
pharmacology
;
Durapatite
;
chemical synthesis
;
pharmacology
;
Membranes, Artificial
;
Mesenchymal Stromal Cells
;
cytology
;
Rats
5.HCV prevalence among nonrenumerated blood donors of different Chinese nationalities
Qifeng SUN ; Liangji WANG ; Yang JI ; Qingkui LIAO ; Julin LI ; Xiaohua HU ; Changyi JIN ; Wanqiao LI ; Al ET
Chinese Journal of Blood Transfusion 2002;0(05):-
Objective To investigate the differences of HCV infection rates among blood donors of different Chinese nationalities.Methods Anti-HCV results from more than 300000 blood donors of 41 nationalities from 8 provinces or autonomous regions were investigated and analyzed.Serum anti-HCV antibody was tested by ELISA.Results(1)The anti-HCV prevalence rate was 0.98%(676/68782) among first time blood donors;0.71%(1750/245137) among repeated donors;and the overall anti-HCV prevalence rate among all the blood donors was 0.77%(2426/313919).The anti-HCV prevalence rate was higher among first time donors,compared to repeated donors(P
6.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
7.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
8.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
9.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.
10.Dexamethasone synergizes with high-fat diet to increase lipid deposition in adipocytes
Mingli SU ; Ying WANG ; Zheng YAN ; Jia LUO ; Jie YANG ; Hua YE ; Aiming LIU ; Julin YANG
The Korean Journal of Internal Medicine 2025;40(1):92-102
Background/Aims:
Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
Methods:
In this study, HFD-fed mice were intraperitoneally injected with DEX 2.5 mg/kg/day for 30 days. Lipid metabolism, adipocyte proliferation, and inflammation were assayed using typical approaches.
Results:
DEX increased the epididymal fat index and epididymal adipocyte size in HFD-fed mice. The number of epididymal adipocytes with diameters > 70 μm accounted for 0.5% of the cells in the control group, 30% of the cells in the DEX group, 19% of the cells in the HFD group, and 38% of all the cells in the D+H group. Adipocyte proliferation in the D+H group was inhibited by DEX treatment. Adipocyte enlargement in the D+H group was associated with increased the lipid accumulation but not the adipocyte proliferation. In contrast, the liver triglyceride and total cholesterol levels and their metabolism were downregulated by the same treatment, indicating the therapeutic potential of DEX for nonalcoholic fatty liver disease.
Conclusions
DEX synergizes with HFD to promote lipid deposition in adipose tissues. A high risk of obesity development in patients receiving HFD and DEX treatment is suggested.