1.Effect of radiotherapy on neointima of prosthetic vascular graft after prosthetic vessel replacement of abdominal aorta
Jingqiang YAN ; Chang SHU ; Xiao ZHOU ; Heng WAN
Chinese Journal of General Surgery 1997;0(06):-
0.05) between the radiotherapy and control groups,and the coverage of vascular endothelial cell was incomplete in each group;8 weeks after surgery,the intimal thickness of radiotherapy group was statistically thinner than that of control group(P
2.Treatment of acute deep venous thrombosis of left lower extremity accompanied with Cockett syndrome
Dalin LI ; Jingqiang YAN ; Yunhui CHEN ; Kun ZHANG
Chinese Journal of General Surgery 1997;0(06):-
Objective To explore the effective treatment of acute deep venous thrombosis(DVT) of left lower extremity accompanied with Cockett syndrome.Methods The data of 16 patients with acute DVT of left lower extremity accompanied with Cockett syndrome,who were admitted to our hospital from August,2004 to January,2008,were analyzed retrospectively.Inferior vena caval filters were inserted and thrombectomy was done to all of the 16 patients;PTA and stent insertion were done in 13 patients and PTA only in the other 3 patients.Anticoagulation,thrombolysis and antiplatelet therapy were given postoperatively to all the patients.Results There was no death or pulmonary embolism in all 16 patients;Forteen patieats had good outcome,2 had acute DVT of left lower extremity one day after surgery,and limbs swelling subsided after anticoagulation,thrombolysis and antiplatelet treatment before their discharge.Forteen patients were followed up from 1 month to 25 months(average 11 months),and 2 patients had post-DVT syndrome,but the others had no swelling or varicose veins of the lower extremity.Conclusions Most patients with acute DVT of left lower extremity accompanied with Cockett syndrome could get satisfactory outcome with thrombectomy,PTA and stent insertion.
3.The effect of high dose external beam radiation on the ePTFE prosthesis-arterial anastomosis
Xiao ZHOU ; Heng WAN ; Chang SHU ; Jingqiang YAN
Chinese Journal of General Surgery 2000;0(12):-
Objective To explore the effect of high dose external beam radiation on the ePTFE prosthesis-arterial anastomosis.Methods The infrarenal abdominal aorta was replaced by ePTFE prosthesis graft in 20 dogs,and all the animals were randomly divided into 2 groups,including of irradiated groups and the control groups,which were or were not associated post-operative external radiation(35 Gy) to the anastomosis.All the animals were sacrificed at 4 weeks and 8 weeks after operation for histological and immunohistochemical examination of the prosthesis-arterial anastomosis.Results There was marked histological changes caused by 35 Gy external irradiation at the prosthesis-arterial anastomosis,but no disunion,rupture,or aneurysm was found at the anastomosis.Radiation did not increase the rate of thrombosis at the prosthesis.The result of immunohistochemical examination showed that two side of the anstomosis were CD34 positive.Conclusions High dose of external beam(35 Gy) can cause marked histological changes at the prosthesis-arterial anastomosis,however,it will not exert negative effect on anastomosis in the short term.
4.A strategy for searching antigenic regions in the SARS-CoV spike protein.
Yan REN ; Zhengfeng ZHOU ; Jinxiu LIU ; Liang LIN ; Shuting LI ; Hao WANG ; Ji XIA ; Zhe ZHAO ; Jie WEN ; Cuiqi ZHOU ; Jingqiang WANG ; Jianning YIN ; Ningzhi XU ; Siqi LIU
Genomics, Proteomics & Bioinformatics 2003;1(3):207-215
In the face of the worldwide threat of severe acute respiratory syndrome (SARS) to human life, some of the most urgent challenges are to develop fast and accurate analytical methods for early diagnosis of this disease as well as to create a safe anti-viral vaccine for prevention. To these ends, we investigated the antigenicity of the spike protein (S protein), a major structural protein in the SARS-coronavirus (SARS-CoV). Based upon the theoretical analysis for hydrophobicity of the S protein, 18 peptides were synthesized. Using Enzyme-Linked Immunosorbent Assay (ELISA), these peptides were screened in the sera from SARS patients. According to these results, two fragments of the S gene were amplified by PCR and cloned into pET-32a. Both S fragments were expressed in the BL-21 strain and further purified with an affinity chromatography. These recombinant S fragments were confirmed to have positive cross-reactions with SARS sera, either by Western blot or by ELISA. Our results demonstrated that the potential epitope regions were located at Codons 469-882 in the S protein, and one epitope site was located at Codons 599-620. Identification of antigenic regions in the SARS-CoV S protein may be important for the functional studies of this virus or the development of clinical diagnosis.
Antigens, Viral
;
immunology
;
Chromatography, High Pressure Liquid
;
Cloning, Molecular
;
Electrophoresis, Polyacrylamide Gel
;
Enzyme-Linked Immunosorbent Assay
;
Genetic Vectors
;
Humans
;
Mass Spectrometry
;
Membrane Glycoproteins
;
genetics
;
immunology
;
metabolism
;
Molecular Weight
;
Peptide Fragments
;
chemistry
;
Recombinant Proteins
;
genetics
;
immunology
;
SARS Virus
;
genetics
;
immunology
;
metabolism
;
Spike Glycoprotein, Coronavirus
;
Viral Envelope Proteins
;
genetics
;
immunology
;
metabolism
5.The epitope study on the SARS-CoV nucleocapsid protein.
Shuting LI ; Liang LIN ; Hao WANG ; Jianning YIN ; Yan REN ; Zhe ZHAO ; Jie WEN ; Cuiqi ZHOU ; Xumin ZHANG ; Xiaolei LI ; Jingqiang WANG ; Zhengfeng ZHOU ; Jinxiu LIU ; Jianmin SHAO ; Tingting LEI ; Jianqiu FANG ; Ningzhi XU ; Siqi LIU
Genomics, Proteomics & Bioinformatics 2003;1(3):198-206
The nucleocapsid protein (N protein) has been found to be an antigenic protein in a number of coronaviruses. Whether the N protein in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is antigenic remains to be elucidated. Using Western blot and Enzyme-linked Immunosorbent Assay (ELISA), the recombinant N proteins and the synthesized peptides derived from the N protein were screened in sera from SARS patients. All patient sera in this study displayed strong positive immunoreactivities against the recombinant N proteins, whereas normal sera gave negative immunoresponses to these proteins, indicating that the N protein of SARS-CoV is an antigenic protein. Furthermore, the epitope sites in the N protein were determined by competition experiments, in which the recombinant proteins or the synthesized peptides competed against the SARS-CoV proteins to bind to the antibodies raised in SARS sera. One epitope site located at the C-terminus was confirmed as the most antigenic region in this protein. A detailed screening of peptide with ELISA demonstrated that the amino sequence from Codons 371 to 407 was the epitope site at the C-terminus of the N protein. Understanding of the epitope sites could be very significant for developing an effective diagnostic approach to SARS.
Blotting, Western
;
Enzyme-Linked Immunosorbent Assay
;
Epitopes
;
chemistry
;
immunology
;
Humans
;
Nucleocapsid Proteins
;
chemistry
;
immunology
;
Peptide Fragments
;
chemical synthesis
;
Plasmids
;
Recombinant Proteins
;
immunology
;
isolation & purification
;
metabolism
;
SARS Virus
;
genetics
;
immunology
;
metabolism
6.The C-terminal portion of the nucleocapsid protein demonstrates SARS-CoV antigenicity.
Guozhen LIU ; Shaohui HU ; Yongwu HU ; Peng CHEN ; Jianning YIN ; Jie WEN ; Jingqiang WANG ; Liang LIN ; Jinxiu LIU ; Bo YOU ; Ye YIN ; Shuting LI ; Hao WANG ; Yan REN ; Jia JI ; Xiaoqian ZHAO ; Yongqiao SUN ; Xiaowei ZHANG ; Jianqiu FANG ; Jian WANG ; Siqi LIU ; Jun YU ; Heng ZHU ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(3):193-197
In order to develop clinical diagnostic tools for rapid detection of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) and to identify candidate proteins for vaccine development, the C-terminal portion of the nucleocapsid (NC) gene was amplified using RT-PCR from the SARS-CoV genome, cloned into a yeast expression vector (pEGH), and expressed as a glutathione S-transferase (GST) and Hisx6 double-tagged fusion protein under the control of an inducible promoter. Western analysis on the purified protein confirmed the expression and purification of the NC fusion proteins from yeast. To determine its antigenicity, the fusion protein was challenged with serum samples from SARS patients and normal controls. The NC fusion protein demonstrated high antigenicity with high specificity, and therefore, it should have great potential in designing clinical diagnostic tools and provide useful information for vaccine development.
Antigens, Viral
;
immunology
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay
;
Genetic Vectors
;
Genome, Viral
;
Humans
;
Nucleocapsid Proteins
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
genetics
;
isolation & purification
;
metabolism
;
SARS Virus
;
genetics
;
immunology
;
Yeasts
;
genetics
7.A genome sequence of novel SARS-CoV isolates: the genotype, GD-Ins29, leads to a hypothesis of viral transmission in South China.
E'de QIN ; Xionglei HE ; Wei TIAN ; Yong LIU ; Wei LI ; Jie WEN ; Jingqiang WANG ; Baochang FAN ; Qingfa WU ; Guohui CHANG ; Wuchun CAO ; Zuyuan XU ; Ruifu YANG ; Jing WANG ; Man YU ; Yan LI ; Jing XU ; Bingyin SI ; Yongwu HU ; Wenming PENG ; Lin TANG ; Tao JIANG ; Jianping SHI ; Jia JI ; Yu ZHANG ; Jia YE ; Cui'e WANG ; Yujun HAN ; Jun ZHOU ; Yajun DENG ; Xiaoyu LI ; Jianfei HU ; Caiping WANG ; Chunxia YAN ; Qingrun ZHANG ; Jingyue BAO ; Guoqing LI ; Weijun CHEN ; Lin FANG ; Changfeng LI ; Meng LEI ; Dawei LI ; Wei TONG ; Xiangjun TIAN ; Jin WANG ; Bo ZHANG ; Haiqing ZHANG ; Yilin ZHANG ; Hui ZHAO ; Xiaowei ZHANG ; Shuangli LI ; Xiaojie CHENG ; Xiuqing ZHANG ; Bin LIU ; Changqing ZENG ; Songgang LI ; Xuehai TAN ; Siqi LIU ; Wei DONG ; Jun WANG ; Gane Ka-Shu WONG ; Jun YU ; Jian WANG ; Qingyu ZHU ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(2):101-107
We report a complete genomic sequence of rare isolates (minor genotype) of the SARS-CoV from SARS patients in Guangdong, China, where the first few cases emerged. The most striking discovery from the isolate is an extra 29-nucleotide sequence located at the nucleotide positions between 27,863 and 27,864 (referred to the complete sequence of BJ01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream of the N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29, suggests a significant genetic event and differentiates it from the previously reported genotype, the dominant form among all sequenced SARS-CoV isolates. A 17-nt segment of this extra sequence is identical to a segment of the same size in two human mRNA sequences that may interfere with viral replication and transcription in the cytosol of the infected cells. It provides a new avenue for the exploration of the virus-host interaction in viral evolution, host pathogenesis, and vaccine development.
Base Sequence
;
China
;
Cluster Analysis
;
Gene Components
;
Genetic Variation
;
Genome, Viral
;
Genotype
;
Molecular Sequence Data
;
Phylogeny
;
Reverse Transcriptase Polymerase Chain Reaction
;
SARS Virus
;
genetics
;
Sequence Analysis, DNA
;
Severe Acute Respiratory Syndrome
;
genetics