1.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Biomedical Data in China: Policy, Accumulation, Platform Construction, and Applications.
Jing-Chen ZHANG ; Jing-Wen SUN ; Xiao-Meng LIU ; Jin-Yan LIU ; Wei LUO ; Sheng-Fa ZHANG ; Wei ZHOU
Chinese Medical Sciences Journal 2025;40(1):9-17
Biomedical data is surging due to technological innovations and integration of multidisciplinary data, posing challenges to data management. This article summarizes the policies, data collection efforts, platform construction, and applications of biomedical data in China, aiming to identify key issues and needs, enhance the capacity-building of platform construction, unleash the value of data, and leverage the advantages of China's vast amount of data.
China
;
Humans
;
Biomedical Research
;
Data Management
;
Data Collection
7.Genetic profiling and intervention strategies for phenylketonuria in Gansu, China: an analysis of 1 159 cases.
Chuan ZHANG ; Pei ZHANG ; Bing-Bo ZHOU ; Xing WANG ; Lei ZHENG ; Xiu-Jing LI ; Jin-Xian GUO ; Pi-Liang CHEN ; Ling HUI ; Zhen-Qiang DA ; You-Sheng YAN
Chinese Journal of Contemporary Pediatrics 2025;27(7):808-814
OBJECTIVES:
To investigate the molecular epidemiology of children with phenylketonuria (PKU) in Gansu, China, providing foundational data for intervention strategies.
METHODS:
A retrospective analysis was conducted on 1 159 PKU families who attended Gansu Provincial Maternity and Child Care Hospital from January 2012 to December 2024. Sanger sequencing, multiplex ligation-dependent probe amplification, whole exome sequencing, and deep intronic variant analysis were used to analyze the PAH gene.
RESULTS:
For the 1 159 children with PKU, 2 295 variants were identified in 2 318 alleles, resulting in a detection rate of 99.01%. The detection rates were 100% (914/914) in 457 classic PKU families, 99.45% (907/912) in 456 mild PKU families, and 96.34% (474/492) in 246 mild hyperphenylalaninemia families. The 2 295 variants detected comprised 208 distinct mutation types, among which c.728G>A (14.95%, 343/2 295) had the highest frequency, followed by c.611A>G (4.88%, 112/2 295) and c.721C>T (4.79%, 110/2 295). The cumulative frequency of the top 23 hotspot variants reached 70.28% (1 613/2 295), and most variant alleles were detected in exon 7 (29.19%, 670/2 295).
CONCLUSIONS
Deep intronic variant analysis of the PAH gene can improve the genetic diagnostic rate of PKU. The development of targeted detection kits for PAH hotspot variants may enable precision screening programs and enhance preventive strategies for PKU.
Humans
;
Phenylketonurias/epidemiology*
;
Female
;
Male
;
Retrospective Studies
;
Phenylalanine Hydroxylase/genetics*
;
Mutation
;
Child, Preschool
;
China/epidemiology*
;
Child
;
Infant
8.Clinical implication of post-angioplasty quantitative flow ratio in the patients with coronary artery de novo lesions underwent drug-coated balloons treatment.
Yun-Hui ZHU ; Xu-Lin HONG ; Tian-Li HU ; Qian-Qian BIAN ; Yu-Fei CHEN ; Tian-Ping ZHOU ; Jing LI ; Guo-Sheng FU ; Wen-Bin ZHANG
Journal of Geriatric Cardiology 2025;22(3):332-343
BACKGROUND:
Quantitative flow ratio (QFR) holds significant value in guiding drug-coated balloon (DCB) treatment and enhancing outcomes. However, the predictive capability of post-angioplasty QFR for long-term clinical events in patients with de novo lesions who receive DCB treatment remains uncertain. The aim of this study was to explore the potential significance of post-angioplasty QFR measurements in predicting clinical outcomes in patients underwent DCB treatment for de novo lesions.
METHODS:
Patients who underwent DCB-only intervention for de novo lesions were enrolled. QFR was conducted after DCB treatment. The patients were then categorized based on post-angioplasty QFR. The primary endpoint was major adverse cardiac events (MACE), encompassing all-cause death, cardiovascular death, nonfatal myocardial infarction, stroke, and target vessel revascularization.
RESULTS:
A total of 553 patients with 561 lesions were included. The median follow-up period was 505 days, during which 66 (11.8%) MACEs occurred. Based on post-procedural QFR grouping, there were 259 cases in the high QFR group (QFR > 0.93) and 302 cases in the low QFR group (QFR ≤ 0.93). Kaplan-Meier analysis revealed a significantly higher cumulative incidence of MACE in the low QFR group (log-rank P = 0.004). The multivariate Cox proportional hazards model demonstrated a significant inverse correlation between QFR and the occurrence of MACEs (HR = 0.522, 95%CI: 0.289-0.942, P = 0.031). Landmark analysis indicated that high QFR had a significant reducing effect on the cumulative incidence of MACEs within 1 year (log-rank P = 0.016) and 1-5 years (log-rank P = 0.026).
CONCLUSIONS
In patients who underwent DCB-only treatment for de novo lesions, higher post-procedural QFR values (> 0.93) were identified as an independent protective factor against adverse prognosis.
9.Expert consensus on digital restoration of complete dentures.
Yue FENG ; Zhihong FENG ; Jing LI ; Jihua CHEN ; Haiyang YU ; Xinquan JIANG ; Yongsheng ZHOU ; Yumei ZHANG ; Cui HUANG ; Baiping FU ; Yan WANG ; Hui CHENG ; Jianfeng MA ; Qingsong JIANG ; Hongbing LIAO ; Chufan MA ; Weicai LIU ; Guofeng WU ; Sheng YANG ; Zhe WU ; Shizhu BAI ; Ming FANG ; Yan DONG ; Jiang WU ; Lin NIU ; Ling ZHANG ; Fu WANG ; Lina NIU
International Journal of Oral Science 2025;17(1):58-58
Digital technologies have become an integral part of complete denture restoration. With advancement in computer-aided design and computer-aided manufacturing (CAD/CAM), tools such as intraoral scanning, facial scanning, 3D printing, and numerical control machining are reshaping the workflow of complete denture restoration. Unlike conventional methods that rely heavily on clinical experience and manual techniques, digital technologies offer greater precision, predictability, and efficacy. They also streamline the process by reducing the number of patient visits and improving overall comfort. Despite these improvements, the clinical application of digital complete denture restoration still faces challenges that require further standardization. The major issues include appropriate case selection, establishing consistent digital workflows, and evaluating long-term outcomes. To address these challenges and provide clinical guidance for practitioners, this expert consensus outlines the principles, advantages, and limitations of digital complete denture technology. The aim of this review was to offer practical recommendations on indications, clinical procedures and precautions, evaluation metrics, and outcome assessment to support digital restoration of complete denture in clinical practice.
Humans
;
Denture, Complete
;
Computer-Aided Design
;
Denture Design/methods*
;
Consensus
;
Printing, Three-Dimensional
10.Characteristic Analysis of Adult Acute Myeloid Leukemia Patients with PTPN11 Gene Mutation
Li SHENG ; Ya-Jiao LIU ; Jing-Fen ZHOU ; Hong-Ying CHAO ; Hai-Ying HUA ; Xin ZHOU ; Xiao-Hong ZHAO
Journal of Experimental Hematology 2024;32(4):1063-1070
Objective:To investigate the incidence of PTPN11 gene mutation and its associated gene mutations in adult patients with acute myeloid leukemia(AML),and analyze its clinical characteristics.Methods:Second-generation sequencing and Sanger sequencing were used to detect 51 gene mutations,and multiplex-PCR was used to detect 41 fusion genes from 451 newly diagnosed adult AML patients admitted to Affiliated Hospital of Jiangnan University,Changzhou Second People's Hospital,Wuxi People's Hospital and Wuxi Second People's Hospital from January 2017 to July 2022.Results:Among 451 primary adult AML patients,the PTPN11 gene mutation was detected in 34 cases,and the mutation rate was 7.5%.In the 34 patients,37 PTPN11 alterations were found,which were exclusively missense mutations affecting residues located within the N-SH2(31 cases)and PTP(6 cases)domains and clustered overwhelmingly in exon 3.The platelet count of PTPN11 mutation patients was 76.5(23.5,119.0)× 109/L,which was significantly higher than 41.0(22.0,82.5)×109/L of wild-type patients(P<0.05).While,there were no significant differences in sex,age,peripheral white blood cell count,hemoglobin,and bone marrow blast between PTPN11 mutation and wild-type patients(P>0.05).In FAB subtypes,PTPN11 mutations were mainly distributed in M5,followed by M2 and M4,less frequently in M3 and M6.There was no significant difference in the distribution of FAB subtypes between PTPN11 mutation and wild-type patients(P>0.05).A total of 118 AML patients were detected positive fusion gene,among which patients with PTPN11 mutations had a higher incidence of positive MLL-AF6 than wild-type ones(P<0.01).97.1%of 34 patients with PTPN11 mutations were accompanied by other mutations,in descending order,they were respectively NPM1(38.2%),NRAS(32.4%),FLT3-ITD(32.4%),DNMT3A(32.4%)and KRAS(23.5%),etc.Conclusion:PTPN11 mutation has a certain incidence in AML patients and is clustered overwhelmingly in exon 3.ALL of them are exclusively missense mutations,and most often present in conjunction with NPM1 mutations.FAB typing of PTPN11 mutation is mostly manifested as M5 subtype,which is associated with higher platelet counts.

Result Analysis
Print
Save
E-mail