1.RFLPs ANALYSIS OF DIGOXIGENIN-LABELLED pAW101 PROBE AND ITS PRACTICAL USES
Chao LIU ; Chaoquan LUO ; Yinghao YANG ; Xinyao WU ; Jianyang LUO
Chinese Journal of Forensic Medicine 1987;0(03):-
A new method to revel RFLPs is presented. The human genomic DNAwas purified by saturatedNaCl solution and the pAW101 probe labelled with digoxigenin-dUTP. The relationships of RFLPsand genetic patterns of PGM1 (phosphoglucomutase),EsD (esterase D),GLO1 (glyoxalase)and ACP(acid phosphatase ) between the fillal generation and parental generation were detected in 15 families(among them 11 cases were aborted fetuses). The probability of paternity (w)was caculated accor-ding to Essen - Moller's formula, each w vlua was over 99. 73 %, reached the standard of incladingpaternity. An effective,rapid, and non-toxic RFLPs technique was established, which is easy to man-age in common lab oratories.
2.Effect of naringenin on the anti-inflammatory, vascularization, and osteogenesis differentiation of human periodontal ligament stem cells via the stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 signaling axis stimulated by lipopolysaccharide.
Shenghong LI ; Shiyuan PENG ; Xiaoling LUO ; Yipei WANG ; Xiaomei XU
West China Journal of Stomatology 2023;41(2):175-184
OBJECTIVES:
This study aimed to investigate how naringenin (Nar) affected the anti-inflammatory, vascula-rization, and osteogenesis differentiation of human periodontal ligament stem cells (hPDLSCs) stimulated by lipopolysaccharide (LPS) and to preliminarily explore the underlying mechanism.
METHODS:
Cell-counting kit-8 (CCK8), cell scratch test, and Transwell assay were used to investigate the proliferation and migratory capabilities of hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red staining, lumen-formation assay, enzyme-linked immunosorbent assay, quantitative timed polymerase chain reaction, and Western blot were used to measure the expression of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), vascular endothlial growth factor (VEGF), basic fibroblast growth factor (bFGF), von Willebrand factor (vWF), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6.
RESULTS:
We observed that 10 μmol/L Nar could attenuate the inflammatory response of hPDLSCs stimulated by 10 μg/mL LPS and promoted their proliferation, migration, and vascularization differentiation. Furthermore, 0.1 μmol/L Nar could effectively restore the osteogenic differentiation of inflammatory hPDLSCs. The effects of Nar's anti-inflammatory and promotion of osteogenic differentiation significantly decreased and inflammatory vascularization differentiation increased after adding AMD3100 (a specific CXCR4 inhibitor).
CONCLUSIONS
Nar demonstrated the ability to promote the anti-inflammatory, vascularization, and osteogenic effects of hPDLSCs stimulated by LPS, and the ability was associated with the stromal cell-derived factor/C-X-C motif chemokine receptor 4 signaling axis.
Humans
;
Anti-Inflammatory Agents/pharmacology*
;
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12
;
Lipopolysaccharides/pharmacology*
;
Osteogenesis
;
Periodontal Ligament/metabolism*
;
Receptors, Chemokine/metabolism*
;
Stem Cells
;
Interleukin-8/metabolism*
3.Development of a reference substance for live bacterial count of Streptococcicosis live vaccines.
Lingxiang XIN ; Xiuli WANG ; Wenjing LV ; Lianna ZANG ; Dongmei ZHU ; Ying LUO ; Yuan ZHANG ; Xiaoning LI ; Bo LIU ; Junping LI
Chinese Journal of Biotechnology 2021;37(7):2554-2562
This study attempts to develop a reference substance for the live bacteria count of Streptococcicosis live vaccines in order to evaluate the validity of live bacterial count in inspection and testing. We prepared a batch of live Streptococcus suis reference substance for live bacterial count, tested their physical property, purity, vacuum degree, remaining moisture, and determined their homogeneity, thermal stability and transportation stability. Moreover, we organized collaborative calibration to assign count values to the reference substance and determine the shelf life of the reference substance in 12 months. The results showed that the physical property, the purity, the remaining moisture and the vacuum degree of the reference substance were all in compliance with the requirements of the Chinese Veterinary Pharmacopoeia. The homogeneity test showed that the coefficient of variation of the count of the reference substance was less than 10%, indicating a good homogeneity. Transportation stability test showed that the reference substance remained active after 72 h transportation in summer and winter with the package of styrofoam boxes and ice packs. Thermal stability test showed that the reference substance could be stored for up to 3 months at -20 °C, or up to 21 days at 4 °C. According to the collaborative calibration, the reference vaccine was assigned a count value range of (8.5-12.1)×107 CFU/ampoule. The shelf life test showed that the reference substance was stable for 12 months when stored at -70 °C. The reference substance could provide a reference for the live bacterial count of Streptococcicosis live vaccines. Moreover, it could also be used as a reference to evaluate the quality of corresponding agar media.
Bacterial Load
;
Reference Standards
;
Vaccines, Attenuated
4.Fabrication of bioactive tissue engineering scaffold for reconstructing calcified cartilage layer based on three-dimension printing technique.
Xinning YU ; Jinghua FANG ; Jianyang LUO ; Xianyan YANG ; Dongshuang HE ; Zhongru GOU ; Xuesong DAI
Journal of Zhejiang University. Medical sciences 2016;45(2):126-131
OBJECTIVETo fabricate organic-inorganic composite tissue engineering scaffolds for reconstructing calcified cartilage layer based on three-dimensional (3D) printing technique.
METHODSThe scaffolds were developed by 3D-printing technique with highly bioactive calcium-magnesium silicate ultrafine particles of 1%, 3% and 5% of mass fraction, in which the organic phases were composed of type I collagen and sodium hyaluronate. The 3D-printed scaffolds were then crosslinked and solidified by alginate and CaCl₂ aerosol. The pore size and distribution of inorganic phase were observed with scanning electron microscope (SEM); the mechanical properties were tested with universal material testing machine, and the porosity of scaffolds was also measured.
RESULTSPore size was approximately (212.3 ± 34.2) μm with a porosity of (48.3 ± 5.9)%, the compressive modulus of the scaffolds was (7.2 ± 1.2) MPa, which was irrelevant to the percentage changes of calcium-magnesium silicate, the compressive modulus was between that of cartilage and subchondral bone.
CONCLUSIONThe porous scaffolds for calcified cartilage layer have been successfully fabricated, which would be used for multi-layered composite scaffolds in osteochondral injury.
Bioprinting ; Cartilage ; growth & development ; Materials Testing ; Porosity ; Printing, Three-Dimensional ; Tissue Engineering ; methods ; Tissue Scaffolds ; chemistry