1.Effect of Danggui Buxuetang on PINK1/Parkin Signaling Pathway of Vascular Dementia Rats
Guifang QI ; Yue JIANG ; Yunxiang TAN ; Nanbu WANG ; Xinghua CHEN ; Ting WAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):15-24
ObjectiveTo investigate the potential mechanism of Danggui Buxuetang (DBT) in the treatment of vascular dementia (VAD). MethodsSixty male SD rats were randomly assigned to the sham-operated group, model group, DBT low-, medium-, and high-dose groups, and the donepezil group. Except for the sham-operated group, rats in all other groups underwent bilateral common carotid artery ligation. After successful modeling, DBT was administered at doses of 9.2, 18.4, 36.8 g·kg-1 for the low-, medium-, and high-dose groups, respectively, while the donepezil group received 3 mg·kg-1 donepezil solution by gavage once daily. After 4 consecutive weeks of drug treatment, rats underwent the Morris water maze test, novel object recognition test, Nissl staining to observe hippocampal neurons, and immunofluorescence staining to detect the expression of neuronal nuclear protein (NeuN) in the hippocampus. Western blot was used to assess the expression of PTEN-induced kinase 1 (PINK1), Parkin, microtubule-associated protein 1 light chain 3Ⅱ (LC3Ⅱ), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax). Transmission electron microscopy was used to observe hippocampal neuronal ultrastructure. Real-time PCR was used to detect the expression of NADPH oxidase subunits p22phox and p47phox in hippocampal tissues. The levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity were measured to evaluate oxidative stress levels. ResultsIn the Morris water maze test, escape latency changed significantly over time in all groups except the model group. Compared with the sham-operated group, the model group showed significantly prolonged escape latency (P<0.01). Compared with the model group, rats in the DBT groups and the donepezil group exhibited significantly shorter escape latency (P<0.05, P<0.01). The number of crossings over the original platform was significantly reduced in the model group compared with the sham-operated group (P<0.01), whereas rats in the DBT and donepezil groups showed significantly increased platform crossings compared with the model group (P<0.05, P<0.01). Compared with the sham-operated group, exploration time of new objects was significantly reduced in the model group (P<0.01). Compared with the model group, exploration time of new objects increased significantly in the medium- and high-dose DBT groups and the donepezil group (P<0.05, P<0.01), while no significant change was observed in the low-dose DBT group. Compared with the high-dose DBT group, rats in the donepezil group had significantly prolonged escape latency and reduced platform crossings and new-object exploration time (P<0.05). Nissl staining showed decreased density of healthy neurons in the CA1 and CA3 regions of the hippocampus in the model group, with loss of Nissl bodies and nuclear atrophy or disappearance. In the high-dose DBT group, neuronal density in CA1 and CA3 increased, with neurons arranged closely and displaying normal morphology. Immunofluorescence showed that compared with the sham-operated group, the hippocampal NeuN⁺ cell count in the VAD model group was significantly decreased(P<0.01), compared with the VAD model group, the hippocampal NeuN⁺ cell count in the high-dose DBT group was significantly increased(P<0.01). Compared with the sham-operated group, the expression of PINK1, Parkin, LC3Ⅱ, and Bax proteins was significantly increased(P<0.01), while the expression of Bcl-2 was significantly decreased in the VAD model group(P<0.01). Compared with the VAD model group, the high-dose DBT group showed significantly decreased expression of PINK1, Parkin, LC3Ⅱ, and Bax proteins(P<0.01)and significantly upregulated Bcl-2 expression(P<0.01). The medium-dose DBT group exhibited significantly reduced expression of Parkin, LC3Ⅱ, and Bax proteins(P<0.05,P<0.01) and significantly increased Bcl-2 expression(P<0.01), while no statistically significant differences were observed in the low-dose DBT group. Transmission electron microscopy showed mitochondrial pyknosis, thickened cristae, increased electron density, and the presence of mitochondrial autophagy in the model group. In contrast, hippocampal neurons in the high-dose DBT group contained abundant mitochondria with intact morphology, clear cristae, and uniform matrix. Compared with the sham-operated group, total antioxidant capacity, SOD activity, and GSH levels were significantly decreased, while MDA levels were significantly increased in the model group (P<0.01). Compared with the model group, total antioxidant capacity and antioxidant levels (SOD, GSH) increased significantly, and MDA decreased significantly in the medium- and high-dose DBT groups (P<0.01), while no significant changes were observed in the low-dose DBT group. Compared with the sham-operated group, mRNA expression of p22phox and p47phox was significantly increased in the model group (P<0.01). Compared with the model group, expression of p22phox and p47phox was significantly decreased in the DBT groups (P<0.05, P<0.01). ConclusionDBT may exert neuroprotective effects by regulating PINK1/Parkin-mediated mitochondrial autophagy, thereby improving learning and memory abilities and treating VAD.
2.Research progress and clinical challenges in immunosuppressive regimens for xenotransplantation
Yu ZHANG ; Kun WANG ; Xuyuan ZHU ; Yuxiang CHEN ; Tao LI ; Xiaojie MA ; Hongtao JIANG
Organ Transplantation 2026;17(1):28-35
As a pivotal strategy to alleviate the shortage of organ donors, xenotransplantation has achieved remarkable advances in both pre-clinical and clinical studies in recent years, driven by continuous optimization of gene modification techniques and immunosuppressive regimens. Nevertheless, clinical translation still confronts formidable challenges, including rejection and heightened infection risks, which severely compromise long-term graft survival. Consequently, the role of immunosuppressive regimens in xenotransplantation has become increasingly prominent. This article summarizes the mechanisms underlying xenogeneic immune rejection, the latest developments in immunosuppressive regimens, cutting-edge strategies for inducing immune tolerance and the major hurdles facing clinical xenotransplantation. It delves into potential optimization strategies and directions for future clinical research, aiming to offer theoretical insights and practical guidance for the safe and effective application of clinical xenotransplantation.
3.Expert consensus on neoadjuvant PD-1 inhibitors for locally advanced oral squamous cell carcinoma (2026)
LI Jinsong ; LIAO Guiqing ; LI Longjiang ; ZHANG Chenping ; SHANG Chenping ; ZHANG Jie ; ZHONG Laiping ; LIU Bing ; CHEN Gang ; WEI Jianhua ; JI Tong ; LI Chunjie ; LIN Lisong ; REN Guoxin ; LI Yi ; SHANG Wei ; HAN Bing ; JIANG Canhua ; ZHANG Sheng ; SONG Ming ; LIU Xuekui ; WANG Anxun ; LIU Shuguang ; CHEN Zhanhong ; WANG Youyuan ; LIN Zhaoyu ; LI Haigang ; DUAN Xiaohui ; YE Ling ; ZHENG Jun ; WANG Jun ; LV Xiaozhi ; ZHU Lijun ; CAO Haotian
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):105-118
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy. Approximately 50% to 60% of patients with OSCC are diagnosed at a locally advanced stage (clinical staging III-IVa). Even with comprehensive and sequential treatment primarily based on surgery, the 5-year overall survival rate remains below 50%, and patients often suffer from postoperative functional impairments such as difficulties with speaking and swallowing. Programmed death receptor-1 (PD-1) inhibitors are increasingly used in the neoadjuvant treatment of locally advanced OSCC and have shown encouraging efficacy. However, clinical practice still faces key challenges, including the definition of indications, optimization of combination regimens, and standards for efficacy evaluation. Based on the latest research advances worldwide and the clinical experience of the expert group, this expert consensus systematically evaluates the application of PD-1 inhibitors in the neoadjuvant treatment of locally advanced OSCC, covering combination strategies, treatment cycles and surgical timing, efficacy assessment, use of biomarkers, management of special populations and immune related adverse events, principles for immunotherapy rechallenge, and function preservation strategies. After multiple rounds of panel discussion and through anonymous voting using the Delphi method, the following consensus statements have been formulated: 1) Neoadjuvant therapy with PD-1 inhibitors can be used preoperatively in patients with locally advanced OSCC. The preferred regimen is a PD-1 inhibitor combined with platinum based chemotherapy, administered for 2-3 cycles. 2) During the efficacy evaluation of neoadjuvant therapy, radiographic assessment should follow the dual criteria of Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and immune RECIST (iRECIST). After surgery, systematic pathological evaluation of both the primary lesion and regional lymph nodes is required. For combination chemotherapy regimens, PD-L1 expression and combined positive score need not be used as mandatory inclusion or exclusion criteria. 3) For special populations such as the elderly (≥ 70 years), individuals with stable HIV viral load, and carriers of chronic HBV/HCV, PD-1 inhibitors may be used cautiously under the guidance of a multidisciplinary team (MDT), with close monitoring for adverse events. 4) For patients with a poor response to neoadjuvant therapy, continuation of the original treatment regimen is not recommended; the subsequent treatment plan should be adjusted promptly after MDT assessment. Organ transplant recipients and patients with active autoimmune diseases are not recommended to receive neoadjuvant PD-1 inhibitor therapy due to the high risk of immune related activation. Rechallenge is generally not advised for patients who have experienced high risk immune related adverse events such as immune mediated myocarditis, neurotoxicity, or pneumonitis. 5) For patients with a good pathological response, individualized de escalation surgery and function preservation strategies can be explored. This consensus aims to promote the standardized, safe, and precise application of neoadjuvant PD-1 inhibitor strategies in the management of locally advanced OSCC patients.
4.Epidemiological characteristics analysis of tuberculosis among college students in Yangzhou during 2020-2024
Chinese Journal of School Health 2026;47(1):109-112
Objective:
To analyze the epidemiological characteristics of pulmonary tuberculosis (PTB) among college students in Yangzhou from 2020 to 2024, so as to provide a scientific basis for developing prevention and control strategies.
Methods:
An epidemiological investigation was conducted among 162 college students with PTB, and 7 134 of their contacts were screened. Data were obtained from the tuberculosis information management system and on campus screening records. Using descriptive epidemiological methods, trends in incidence, seasonal distribution, and bacteriological characteristics were analyzed.
Results:
From 2020 to 2024, the annual average incidence of pulmonary tuberculosis among college students in Yangzhou was 29.42 per 100 000, showing an overall fluctuating downward trend ( χ 2=12.36, P <0.01). Cases were mainly concentrated in summer and autumn, with the highest proportion in autumn (41.36%, 67/162), followed by summer (23.46%, 38/162). The proportion of etiologically positive cases increased from 37.21% in 2020 to 71.43% in 2024; among positive cases, the proportion of latent tuberculosis infection (LTBI) decreased from 66.67% (10/15) to 26.67% (4/15). The etiological positive rate was higher in females than in males ( χ 2= 11.76 , P <0.01). Comparison of screening methods showed that among index cases, the LTBI detection rate of the recombinant Mycobacterium tuberculosis fusion protein skin test (C-TST) was higher than that of the tuberculin skin test (TST), but the difference was not statistically significant ( χ 2=0.65, P =0.42); among close contacts, the detection rate of TST was higher than that of C-TST (15.1%,10.1%; χ 2=5.23, P <0.05).
Conclusion
From 2020 to 2024, the annual average incidence of pulmonary tuberculosis among college students in Yangzhou showed an overall fluctuating downward trend, with differences in TB infection screening methods and gender.
5.Interventional Effect of Active Ingredients of Chinese Medicine and Compound Formulas on Epithelial-mesenchymal Transition in Lung Cancer: A Review
Shanshan SONG ; Min JIANG ; Xinxin LIU ; Bozhen HUANG ; Siyi MA ; Guoyu WANG ; Wanqing WANG ; Luyao WANG ; Liang WANG ; Ruiqing BO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):336-346
Lung cancer is the leading cause of cancer-related deaths worldwide, and tumor metastasis is a key factor contributing to the mortality of most lung cancer patients. Aberrant activation of epithelial-mesenchymal transition (EMT) is a major driver of lung cancer progression and metastasis. EMT is characterized by the loss of apical-basal polarity and intercellular adhesion in highly differentiated, polarized, and organized epithelial cells, which acquire motility, migratory potential, and invasive properties. During this process, cells undergo cytoskeletal remodeling and transform into a mesenchymal phenotype, accompanied by associated changes in cellular markers. The EMT process is highly complex and is tightly regulated by intricate networks involving multiple transcription factors, post-translational controls, epigenetic modifications, and non-coding RNAs. Therefore, therapies targeting the mechanisms of malignant transformation and their associated pathways in lung cancer are of significant clinical importance. In recent years, EMT has attracted increasing attention as a potential target for cancer therapy. Chinese medicine, with its characteristics of multi-target action, low side effects, and good therapeutic efficacy, has demonstrated an important role in anticancer treatment. A series of studies have investigated the role of Chinese medicine in inhibiting EMT in lung cancer. Active ingredients of Chinese medicine, including flavonoids, glycosides, phenols, terpenoids, saccharides, and alkaloids, as well as Chinese medicine compound formulas, have shown significant regulatory effects on EMT. Their mechanisms mainly involve multiple pathways, targets, and links, including signaling pathways, exosomes, microRNAs (miRNAs), and the tumor-associated immune microenvironment. This article summarizes the mechanisms by which EMT promotes malignant tumor progression and reviews the current research on how Chinese medicine active ingredients, monomers, and compound formulas inhibit EMT and suppress lung cancer cell migration and invasion. This study is expected to provide comprehensive theoretical information for basic and translational research on lung cancer.
6.Stem cell exosomes: new hope and future potential for relieving liver fibrosis
Lihua LI ; Yongjie LIU ; Kunpeng WANG ; Jinggang MO ; Zhiyong WENG ; Hao JIANG ; Chong JIN
Clinical and Molecular Hepatology 2025;31(2):333-349
Liver fibrosis is a chronic liver injury resulting from factors like viral hepatitis, autoimmune hepatitis, non-alcoholic steatohepatitis, fatty liver disease, and cholestatic liver disease. Liver transplantation is currently the gold standard for treating severe liver diseases. However, it is limited by a shortage of donor organs and the necessity for lifelong immunosuppressive therapy. Mesenchymal stem cells (MSCs) can differentiate into various liver cells and enhance liver function when transplanted into patients due to their differentiation and proliferation capabilities. Therefore, it can be used as an alternative therapy for treating liver diseases, especially for liver cirrhosis, liver failure, and liver transplant complications. However, due to the potential tumorigenic effects of MSCs, researchers are exploring a new approach to treating liver fibrosis using extracellular vesicles (exosomes) secreted by stem cells. Many studies show that exosomes released by stem cells can promote liver injury repair through various pathways, contributing to the treatment of liver fibrosis. In this review, we focus on the molecular mechanisms by which stem cell exosomes affect liver fibrosis through different pathways and their potential therapeutic targets. Additionally, we discuss the advantages of exosome therapy over stem cell therapy and the possible future directions of exosome research, including the prospects for clinical applications and the challenges to be overcome.
7.Role of noninvasive tests in the prognostication of metabolic dysfunction-associated steatotic liver disease
Yue WANG ; Sherlot Juan SONG ; Yichong JIANG ; Jimmy Che-To LAI ; Grace Lai-Hung WONG ; Vincent Wai-Sun WONG ; Terry Cheuk-Fung YIP
Clinical and Molecular Hepatology 2025;31(Suppl):S51-S75
In managing metabolic dysfunction-associated steatotic liver disease, which affects over 30% of the general population, effective noninvasive biomarkers for assessing disease severity, monitoring disease progression, predicting the development of liver-related complications, and assessing treatment response are crucial. The advantage of simple fibrosis scores lies in their widespread accessibility through routinely performed blood tests and extensive validation in different clinical settings. They have shown reasonable accuracy in diagnosing advanced fibrosis and good performance in excluding the majority of patients with a low risk of liver-related complications. Among patients with elevated serum fibrosis scores, a more specific fibrosis and imaging biomarker has proved useful to accurately identify patients at risk of liver-related complications. Among specific fibrosis blood biomarkers, enhanced liver fibrosis is the most widely utilized and has been approved in the United States as a prognostic biomarker. For imaging biomarkers, the availability of vibration-controlled transient elastography has been largely improved over the past years, enabling the use of liver stiffness measurement (LSM) for accurate assessment of significant and advanced fibrosis, and cirrhosis. Combining LSM with other routinely available blood tests enhances the ability to diagnose at-risk metabolic dysfunction-associated steatohepatitis and predict liver-related complications, some reaching an accuracy comparable to that of liver biopsy. Magnetic resonance imaging-based modalities provide the most accurate quantification of liver fibrosis, though the current utilization is limited to research settings. Expanding their future use in clinical practice depends on factors such as cost and facility availability.
9.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
Background:
The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies.
Methods:
MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function.
Results:
Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores.
Conclusion
Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall.
10.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.


Result Analysis
Print
Save
E-mail