1.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
2.The Application of Quantum Dots in Disease Diagnosis and Treatment
Ji-Sheng SHEN ; Li-Li QI ; Jin-Bo WANG ; Zhi-Jian KE ; Qi-Chao WANG
Progress in Biochemistry and Biophysics 2025;52(8):1917-1931
Quantum dots (QDs), nanoscale semiconductor crystals, have emerged as a revolutionary class of nanomaterials with unique optical and electrochemical properties, making them highly promising for applications in disease diagnosis and treatment. Their tunable emission spectra, long-term photostability, high quantum yield, and excellent charge carrier mobility enable precise control over light emission and efficient charge utilization, which are critical for biomedical applications. This article provides a comprehensive review of recent advancements in the use of quantum dots for disease diagnosis and therapy, highlighting their potential and the challenges involved in clinical translation. Quantum dots can be classified based on their elemental composition and structural configuration. For instance, IB-IIIA-VIA group quantum dots and core-shell structured quantum dots are among the most widely studied types. These classifications are essential for understanding their diverse functionalities and applications. In disease diagnosis, quantum dots have demonstrated remarkable potential due to their high brightness, photostability, and ability to provide precise biomarker detection. They are extensively used in bioimaging technologies, enabling high-resolution imaging of cells, tissues, and even individual biomolecules. As fluorescent markers, quantum dots facilitate cell tracking, biosensing, and the detection of diseases such as cancer, bacterial and viral infections, and immune-related disorders. Their ability to provide real-time, in vivo tracking of cellular processes has opened new avenues for early and accurate disease detection. In the realm of disease treatment, quantum dots serve as versatile nanocarriers for targeted drug delivery. Their nanoscale size and surface modifiability allow them to transport therapeutic agents to specific sites, improving drug bioavailability and reducing off-target effects. Additionally, quantum dots have shown promise as photosensitizers in photodynamic therapy (PDT). When exposed to specific wavelengths of light, quantum dots interact with oxygen molecules to generate reactive oxygen species (ROS), which can selectively destroy malignant cells, vascular lesions, and microbial infections. This targeted approach minimizes damage to healthy tissues, making PDT a promising strategy for treating complex diseases. Despite these advancements, the translation of quantum dots from research to clinical application faces significant challenges. Issues such as toxicity, stability, and scalability in industrial production remain major obstacles. The potential toxicity of quantum dots, particularly to vital organs, has raised concerns about their long-term safety. Researchers are actively exploring strategies to mitigate these risks, including surface modification, coating, and encapsulation techniques, which can enhance biocompatibility and reduce toxicity. Furthermore, improving the stability of quantum dots under physiological conditions is crucial for their effective use in biomedical applications. Advances in surface engineering and the development of novel encapsulation methods have shown promise in addressing these stability concerns. Industrial production of quantum dots also presents challenges, particularly in achieving consistent quality and scalability. Recent innovations in synthesis techniques and manufacturing processes are paving the way for large-scale production, which is essential for their widespread adoption in clinical settings. This article provides an in-depth analysis of the latest research progress in quantum dot applications, including drug delivery, bioimaging, biosensing, photodynamic therapy, and pathogen detection. It also discusses the multiple barriers hindering their clinical use and explores potential solutions to overcome these challenges. The review concludes with a forward-looking perspective on the future directions of quantum dot research, emphasizing the need for further studies on toxicity mitigation, stability enhancement, and scalable production. By addressing these critical issues, quantum dots can realize their full potential as transformative tools in disease diagnosis and treatment, ultimately improving patient outcomes and advancing biomedical science.
3.Effects of drought stress training on polysaccharide accumulation and drought resistance of Codonopsis pilosula.
Lu-Lu WANG ; Xiao-Lin WANG ; Zhe-Yu LIU ; Li-Zhen WANG ; Jia-Tong SHI ; Jiao-Jiao JI ; Jian-Ping GAO ; Yun-E BAI
China Journal of Chinese Materia Medica 2025;50(3):672-681
In order to clarify the effects of drought stress training on the quality and drought resistance of Codonopsis pilosula, this study used PEG to simulate drought stress and employed potting with water control for the drought stress training of C. pilosula plants. The polysaccharide content, secondary metabolites, antioxidant system, and photosynthetic pigment system of C. pilosula after drought stress training were analyzed. The results showed that the content of fructans in the root of C. pilosula increased after two rounds of drought stress treatment, and it was significantly higher than that of the control group. The accumulation of fructans in the root of C. pilosula showed an upward trend during the rehydration treatment. The content of lobetyolin and tangshenoside Ⅰ increased after drought stress treatment compared with that of the control group. The rehydration treatment caused first increasing and then decreasing in the content of lobetyolin, while it had no significant effect on the tangshenoside Ⅰcontent. The content of photosynthetic pigments decreased after drought stress treatment, and it gradually increased during the first round of rehydration and the second round of rehydration. Moreover, the increase was faster in the second round of rehydration than in the first round of rehydration. The content of the peroxidation product malondialdehyde(MDA) and the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) increased after drought stress treatment compared with those of the control group, and they showed a tendency of decreasing during rehydration. Moreover, the decrease was faster in the second round of rehydration than in the first round of rehydration. When the plants of C. pilosula after drought stress training were again subjected to severe drought stress, the wilting rate decreased significantly, and the biomass increases significantly. This study showed that the drought stress training could promote the accumulation of polysaccharides and secondary metabolites in the root of C. pilosula. When encountering drought stress again, C. pilosula plants could quickly regulate the antioxidant system and delay the decomposition of chlorophyll to respond to drought stress. The findings provide a theoretical basis for the ecological cultivation of C. pilosula in arid and semi-arid areas.
Codonopsis/growth & development*
;
Droughts
;
Polysaccharides/metabolism*
;
Stress, Physiological
;
Water/metabolism*
;
Antioxidants/metabolism*
;
Photosynthesis
;
Drought Resistance
4.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
5.One-year recovery after lateral retinaculum release combined with chondroplasty in patients with lateral patellar compression syndrome.
Zhen-Long LIU ; Yi-Ting WANG ; Jin-Ming LIN ; Wu-Ji ZHANG ; Jiong-Yuan LI ; Zhi-Hui HE ; Yue-Yang HOU ; Jian-Li GAO ; Wei-Li SHI ; Yu-Ping YANG
Chinese Journal of Traumatology 2025;28(6):462-468
PURPOSE:
Lateral patellar compression syndrome (LPCS) is characterized by a persistent abnormally high stress exerted on the lateral articular surface of the patella due to lateral patellar tilt without dislocation and lateral retinaculum contracture, leading to anterior knee pain. The purpose of this study is to evaluate the efficacy and prognosis of lateral retinaculum release (LRR) combined with chondroplasty in the treatment of LPCS.
METHODS:
This retrospective study evaluated 40 patients who underwent LRR combined with chondroplasty for LPCS between 2020 and 2021. The assessment included improvement in postoperative tenderness and knee joint function. Patients were evaluated using the Lysholm, Tegner, and International Knee Documentation Committee 2000 scoring systems, as well as the visual analog scale, both preoperatively and postoperatively, with the paired comparisons analyzed using a t-test. Additionally, intraoperative observations were made regarding knee joint lesions, including cartilage damage and osteophyte formation, with analysis by the Chi-square test.
RESULTS:
The visual analog scale score for tenderness showed a significant decrease after surgery (p < 0.001). Evaluation of knee joint function also indicated significant improvements, as demonstrated by increased Lysholm, Tegner, and International Knee Documentation Committee 2000 scores postoperatively (p < 0.001, p = 0.011, p < 0.001, respectively). Furthermore, all LPCS patients included in the study presented with cartilage injuries and osteophyte formation. Significant differences were noted in the incidence of cartilage damage and osteophyte formation at different locations within the knee among patients with LPCS.
CONCLUSION
LRR combined with chondroplasty is an effective surgical approach for treating patients with LPCS, with satisfactory recovery observed at the 1-year follow-up. Additionally, the incidence of cartilage damage and osteophyte formation in LPCS patients varies significantly depending on the specific location within the knee joint.
Humans
;
Male
;
Female
;
Retrospective Studies
;
Adult
;
Middle Aged
;
Patella/surgery*
;
Knee Joint/physiopathology*
;
Recovery of Function
;
Young Adult
;
Treatment Outcome
;
Cartilage, Articular/surgery*
;
Adolescent
6.Characteristics of Gut Microbiota Changes and Their Relationship with Infectious Complications During Induction Chemotherapy in AML Patients.
Quan-Lei ZHANG ; Li-Li DONG ; Lin-Lin ZHANG ; Yu-Juan WU ; Meng LI ; Jian BO ; Li-Li WANG ; Yu JING ; Li-Ping DOU ; Dai-Hong LIU ; Zhen-Yang GU ; Chun-Ji GAO
Journal of Experimental Hematology 2025;33(3):738-744
OBJECTIVE:
To investigate the characteristics of gut microbiota changes in patients with acute myeloid leukemia (AML) undergoing induction chemotherapy and to explore the relationship between infectious complications and gut microbiota.
METHODS:
Fecal samples were collected from 37 newly diagnosed AML patients at four time points: before induction chemotherapy, during chemotherapy, during the neutropenic phase, and during the recovery phase. Metagenomic sequencing was used to analyze the dynamic changes in gut microbiota. Correlation analyses were conducted to assess the relationship between changes in gut microbiota and the occurrence of infectious complications.
RESULTS:
During chemotherapy, the gut microbiota α-diversity (Shannon index) of AML patients exhibited significant fluctuations. Specifically, the diversity decreased significantly during induction chemotherapy, further declined during the neutropenic phase (P < 0.05, compared to baseline), and gradually recovered during the recovery phase, though not fully returning to baseline levels.The abundances of beneficial bacteria, such as Firmicutes and Bacteroidetes, gradually decreased during chemotherapy, whereas the abundances of opportunistic pathogens, including Enterococcus, Klebsiella, and Escherichia coli, progressively increased.Analysis of the dynamic changes in gut microbiota of seven patients with bloodstream infections revealed that the bloodstream infection pathogens could be detected in the gut microbiota of the corresponding patients, with their abundance gradually increasing during the course of infection. This finding suggests that bloodstream infections may be associated with opportunistic pathogens originating from the gut microbiota.Compared to non-infected patients, the baseline samples of infected patients showed a significantly lower relative abundance of Bacteroidetes (P < 0.05). Regression analysis indicated that Bacteroidetes abundance is an independent predictive factor for infectious complications (P < 0.05, OR =13.143).
CONCLUSION
During induction chemotherapy in AML patients, gut microbiota α-diversity fluctuates significantly, and the abundance of opportunistic pathogens increase, which may be associated with bloodstream infections. Patients with lower baseline Bacteroidetes abundance are more prone to infections, and its abundance can serve as an independent predictor of infectious complications.
Humans
;
Gastrointestinal Microbiome
;
Leukemia, Myeloid, Acute/microbiology*
;
Induction Chemotherapy
;
Feces/microbiology*
;
Male
;
Female
;
Middle Aged
7.Establishment and Mechanistic Study of Venetoclax-Resistant Cell Lines in Acute Myeloid Leukemia.
Kai-Fan LIU ; Ling-Ji ZENG ; Su-Xia GENG ; Xin HUANG ; Min-Ming LI ; Pei-Long LAI ; Jian-Yu WENG ; Xin DU
Journal of Experimental Hematology 2025;33(4):986-997
OBJECTIVE:
To establish venetoclax-resistant acute myeloid leukemia (AML) cell lines, assess the sensitivity of venetoclax-resistant cell lines to the BCL-2 protein family, and investigate their resistance mechanisms.
METHODS:
CCK-8 method was used to screen AML cell lines (MV4-11, MOLM13, OCI-AML2) that were relatively sensitive to venetoclax. Low concentrations of venetoclax continuously induced drug-resistance development in the cell lines. Changes in cell viability and apoptosis rate before and after resistance development were measured using the CCK-8 method and flow cytometry. BH3 profiling assay was performed to anayze the transform of mitochondrion-dependent apoptosis pathway as well as the sensitivity of resistant cell lines to BCL-2 family proteins and small molecule inhibitors. Real-time fluorescence quantitative PCR (RT-qPCR) was utilized to examine changes in the expression levels of BCL-2 protein family members in both venetoclax-resistant cell lines and multidrug-resistant patients.
RESULTS:
Venetoclax-resistant cell lines of MV4-11, MOLM13, and OCI-AML2 were successfully established, with IC50 values exceeding 10-fold. Under the same concentration of venetoclax, the apoptosis rate of resistant cells decreased significantly (P < 0.05). BH3 profiling assay revealed that the drug-resistant cell lines showed increased sensitivity to many pro-apoptotic proteins (such as BIM,BID and NOXA). RT-qPCR showed significantly upregulated MCL1 and downregulated NOXA1 were detected in drug-resistant cell lines. Expression changes in MCL1 and NOXA1 in venetoclax-resistant patients were consistent with our established drug-resistant cell line results.
CONCLUSION
The venetoclax-resistant AML cell lines were successfully established through continuous induction with low concentrations of venetoclax. The venetoclax resistance resulted in alterations in the mitochondrial apoptosis pathway of the cells and an increased sensitivity of cells to pro-apoptotic proteins BIM, BID, and NOXA, which may be associated with the upregulation of MCL1 expression and downregulation of NOXA1 expression in the drug-resistant cells.
Humans
;
Sulfonamides/pharmacology*
;
Drug Resistance, Neoplasm
;
Bridged Bicyclo Compounds, Heterocyclic/pharmacology*
;
Leukemia, Myeloid, Acute/pathology*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis
;
Antineoplastic Agents/pharmacology*
8.Diagnostic value of ultrasonic shear wave elastography for clinically significant prostate cancer.
Fang-Rui YANG ; Yong-Hao JI ; Li-Tao RUAN ; Jian-Xue LIU ; Yao-Ren ZHANG ; Xiao ZHANG ; Qin-Yun WAN ; Si-Fan REN
National Journal of Andrology 2025;31(6):505-511
OBJECTIVE:
To explore the diagnostic value of shear wave elastography (SWE) for clinically significant prostate cancer (csPCa).
METHODS:
We retrospectively analyzed the clinical data of 359 cases with suspected prostate cancer (PCa) in Baoji Central Hospital from June 2017 to July 2023. All the patients underwent the following examinations in the order of serum prostate-specific antigen (PSA) testing, transrectal ultrasonography (TRUS), measurement of the stiffness of the entire prostate gland by SWE, and TRUS-guided prostate puncture biopsy. The stiffness of the entire prostate gland was defined as the average of Young's modulus at both sides of the base, middle, and apex of the prostate, including the maximum Young's modulus (Emax), mean Young's modulus (Emean), and minimum Young's modulus (Emin). We analyzed the correlation of the parameters of the stiffness of the entire prostate gland with the pathological results, focusing on their diagnostic performance for csPCa.
RESULTS:
Of the 359 cases, 189 were diagnosed by pathological puncture biopsy as BPH, 26 as non-csPCa, and 144 as csPCa. The PSA level, Emax, Emean and Emin were significantly higher in the csPCa than those in the BPH and non-csPCa groups (all P < 0.01), but showed no statistically significant difference between the BPH and non-csPCa groups (all P > 0.05). The area under the receiver operating characteristic curve (AUC), optimal cut-off value, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of Emax in the diagnosis of csPCa were 0.852, 143.92 kPa, 72.22%, 84.65%, 75.91%, 81.98% and 79.67%; those of Emean were 0.868, 82.42 kPa, 67.36%, 91.16%, 83.62%, 80.66% and 81.62%; and those of Emin were 0.682, 32.73 kPa, 47.22%, 89.30%, 73.91%, 71.54% and 72.14%, respectively. In the non-csPCa group, Emax, Emean and Emin were found below the optimal cut-off value in 73.08% (19/26), 92.31% (24/26) and 88.46% (23/26), respectively.
CONCLUSION
The stiffness of the entire prostate gland measured by SWE contributes to the diagnosis of csPCa, reduces unnecessary detection of non-csPCa, and provides some reference for its active surveillance.
Humans
;
Male
;
Prostatic Neoplasms/diagnosis*
;
Elasticity Imaging Techniques
;
Retrospective Studies
;
Prostate/pathology*
;
Prostate-Specific Antigen/blood*
;
Aged
;
Middle Aged
9.Effectiveness of Lianhua Qingwen Granule and Jingyin Gubiao Prescription in Omicron BA.2 Infection and Hospitalization: A Real-World Study of 56,244 Cases in Shanghai, China.
Yu-Jie ZHANG ; Guo-Jian LIU ; Han ZHANG ; Chen LIU ; Zhi-Qiang CHEN ; Ji-Shu XIAN ; Da-Li SONG ; Zhi LIU ; Xue YANG ; Ju WANG ; Zhe ZHANG ; Lu-Ying ZHANG ; Hua FENG ; Yan-Qi ZHANG ; Liang TAN
Chinese journal of integrative medicine 2025;31(1):11-18
OBJECTIVE:
To examine the effectiveness of Chinese medicine (CM) Lianhua Qingwen Granule (LHQW) and Jingyin Gubiao Prescription (JYGB) in asymptomatic or mild patients with Omicron infection in the shelter hospital.
METHODS:
This single-center retrospective cohort study was conducted in the largest shelter hospital in Shanghai, China, from April 10, 2022 to May 30, 2022. A total of 56,244 asymptomatic and mild Omicron cases were included and divided into 4 groups, i.e., non-administration group (23,702 cases), LHQW group (11,576 cases), JYGB group (12,112 cases), and dual combination of LHQW and JYGB group (8,854 cases). The length of stay (LOS) in the hospital was used to assess the effectiveness of LHQW and JYGB treatment on Omicron infection.
RESULTS:
Patients aged 41-60 years, with nadir threshold cycle (CT) value of N gene <25, or those fully vaccinated preferred to receive CM therapy. Before or after propensity score matching (PSM), the multiple linear regression showed that LHQW and JYGB treatment were independent influence factors of LOS (both P<0.001). After PSM, there were significant differences in LOS between the LHQW/JYGB combination and the other groups (P<0.01). The results of factorial design ANOVA proved that the LHQW/JYGB combination therapy synergistically shortened LOS (P=0.032).
CONCLUSIONS
Patients with a nadir CT value <25 were more likely to accept CM. The LHQW/JYGB combination therapy could shorten the LOS of Omicron-infected individuals in an isolated environment.
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Male
;
Female
;
Middle Aged
;
Adult
;
China/epidemiology*
;
Hospitalization
;
COVID-19 Drug Treatment
;
COVID-19/epidemiology*
;
SARS-CoV-2
;
Retrospective Studies
;
Treatment Outcome
;
Length of Stay
;
Young Adult
;
Aged
10.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*

Result Analysis
Print
Save
E-mail