1.Geographical Inference Study of Dust Samples From Four Cities in China Based on ITS2 Sequencing
Wen-Jun ZHANG ; Yao-Sen FENG ; Jia-Jin PENG ; Kai FENG ; Ye DENG ; Ke-Lai KANG ; Le WANG
Progress in Biochemistry and Biophysics 2025;52(4):970-981
ObjectiveIn the realm of forensic science, dust is a valuable type of trace evidence with immense potential for intricate investigations. With the development of DNA sequencing technologies, there is a heightened interest among researchers in unraveling the complex tapestry of microbial communities found within dust samples. Furthermore, striking disparities in the microbial community composition have been noted among dust samples from diverse geographical regions, heralding new possibilities for geographical inference based on microbial DNA analysis. The pivotal role of microbial community data from dust in geographical inference is significant, underscoring its critical importance within the field of forensic science. This study aims to delve deeply into the nuances of fungal community composition across the urban landscapes of Beijing, Fuzhou, Kunming, and Urumqi in China. It evaluates the accuracy of biogeographic inference facilitated by the internal transcribed spacer 2 (ITS2) fungal sequencing while concurrently laying a robust foundation for the operational integration of environmental DNA into geographical inference mechanisms. MethodsITS2 region of the fungal genomes was amplified using universal primers known as 5.8S-Fun/ITS4-Fun, and the resulting DNA fragments were sequenced on the Illumina MiSeq FGx platform. Non-metric multidimensional scaling analysis (NMDS) was employed to visually represent the differences between samples, while analysis of similarities (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) were utilized to statistically evaluate the dissimilarities in community composition across samples. Furthermore, using Linear Discriminant Analysis Effect Size (LEfSe) analysis to identify and filter out species that exhibit significant differences between various cities. In addition, we leveraged SourceTracker to predict the geographic origins of the dust samples. ResultsAmong the four cities of Beijing, Fuzhou, Kunming and Urumqi, Beijing has the highest species richness. The results of species annotation showed that there were significant differences in the species composition and relative abundance of fungal communities in the four cities. NMDS analysis revealed distinct clustering patterns of samples based on their biogeographic origins in multidimensional space. Samples from the same city exhibited clear clustering, while samples from different cities showed separation along the first axis. The results from ANOSIM and PERMANOVA confirmed the significant differences in fungal community composition between the four cities, with the most pronounced distinctions observed between Fuzhou and Urumqi. Notably, the biogeographic origins of all known dust samples were successfully predicted. ConclusionSignificant differences are observed in the fungal species composition and relative abundance among the cities of Beijing, Fuzhou, Kunming, and Urumqi. Employing fungal ITS2 sequencing on dust samples from these urban areas enables accurate inference of biogeographical locations. The high feasibility of utilizing fungal community data in dust for biogeographical inferences holds particular promise in the field of forensic science.
2.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
3.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
4.Effective-compounds of Jinshui Huanxian formula ameliorates pulmonary fibrosis by inhibiting lipid droplet catabolism and thus macrophage M2 polarization
Wen-bo SHAO ; Jia-ping ZHENG ; Peng ZHAO ; Qin ZHANG
Acta Pharmaceutica Sinica 2025;60(2):369-378
This study aims to investigate the effects and mechanisms of the effective-compounds of Jinshui Huanxian formula (ECC-JHF) in improving pulmonary fibrosis. Animal experiments were approved by the Ethics Committee of the Animal Experiment Center of Henan University of Chinese Medicine (approval number: IACUC-202306012). The mouse model of pulmonary fibrosis was induced using bleomycin (BLM). Hematoxylin-eosin (H&E) staining was used to detect the histopathological changes of lung tissues. Masson staining was used to assess the degree of fibrosis in lung tissues. Immunofluorescence (IF) and real-time quantitative PCR (qPCR) were performed to measure the expression of collagen type I (
5.Isoliquiritigenin alleviates abnormal endoplasmic reticulum stress induced by type 2 diabetes mellitus
Kai-yi LAI ; Wen-wen DING ; Jia-yu ZHANG ; Xiao-xue YANG ; Wen-bo GAO ; Yao XIAO ; Ying LIU
Acta Pharmaceutica Sinica 2025;60(1):130-140
Isoliquiritigenin (ISL) is a chalcone compound isolated from licorice, known for its anti-diabetic, anti-cancer, and antioxidant properties. Our previous study has demonstrated that ISL effectively lowers blood glucose levels in type 2 diabetes mellitus (T2DM) mice and improves disturbances in glucolipid and energy metabolism induced by T2DM. This study aims to further investigate the effects of ISL on alleviating abnormal endoplasmic reticulum stress (ERS) caused by T2DM and to elucidate its molecular mechanisms.
6.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
7.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
8.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
9.Marginal Zone Lymphoma with Recurrent Intestinal Obstruction After Multiple Chemotherapy: A Case Report
Sirui HAN ; Yan ZHANG ; Guannan ZHANG ; Peijun LIU ; Wen SHI ; Wenbo LI ; Rongrong LI ; Congwei JIA ; Jian CAO ; Wei WANG
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1344-1351
This article reports a diagnostically and therapeutically challenging case of small intestinal marginal zone lymphoma. The patient presented with recurrent abdominal pain as the chief complaint, and imaging revealed multifocal small bowel wall thickening with high uptake, multisegmental luminal stenosis, and proximal dilation. Initial diagnostic workup, including gastroscopy, colonoscopy, and enteroscopy with biopsy, failed to establish a definitive diagnosis. Empirical anti-tuberculosis therapy was ineffective. A repeat enteroscopic biopsy performed over eight months after symptom onset eventually confirmed the diagnosis of mucosa-associated lymphoid tissue (MALT) extranodal marginal zone lymphoma. Despite three different chemotherapy regimens, the patient's intestinal obstruction symptoms persisted, with imaging still showing multifocal bowel wall thickening and hypermetabolic activity. A critical diagnostic dilemma arose regarding whether the PET/CT-positive lesions represented residual lymphoma or fibrotic scarring, whether further chemotherapy adjustments were warranted, and whether surgical resection was necessary. Multidisciplinary discussion concluded that imaging had limited discriminatory value in this scenario and that surgical intervention should be pursued if feasible. The patient successfully underwent partial small bowel resection, with postoperative pathology confirming no residual lymphoma but significant fibrotic changes. The patient has since resumed a normal diet, with body weight nearly restored to pre-illness levels. This case highlights that fibrotic transformation is a common sequela of treated marginal zone lymphoma and that PET/CT may misleadingly suggest residual disease, potentially leading to unnecessary chemotherapy. Timely surgical intervention is crucial in such scenarios.
10.Acupoint thread-embedding therapy of regulating governor vessel, dispersing lung, and suppressing reflux for gastroesophageal reflux cough: a randomized controlled trial.
Mingjie TANG ; Wen LU ; Xiaoni ZHANG ; Jiawei GAO ; Xinchang WEI ; Jin LU ; Jia ZHU ; Yulu FENG ; Lejing JIAO ; Xiaofang XIA ; Zhi ZHOU ; Zhaoming CHEN
Chinese Acupuncture & Moxibustion 2025;45(8):1047-1052
OBJECTIVE:
To observe the clinical efficacy of acupoint thread-embedding therapy of regulating governor vessel, dispersing lung, and suppressing reflux for gastroesophageal reflux cough (GERC).
METHODS:
A total of 120 GERC patients were randomly assigned to an observation group (60 cases, 1 case dropped out) and a control group (60 cases, 1 case was eliminated). The observation group received acupoint thread-embedding treatment at positive response points of governor vessel. If no such points were detected, the following acupoints were used: Dazhui (GV14), Fenghu (Extra), Shendao (GV11), Lingtai (GV10), and Zhiyang (GV9). Treatment was administered once every two weeks. The control group received oral rabeprazole enteric capsules at 20 mg twice daily. All the treatment was given for 6 weeks. Clinical outcomes were assessed using cough symptom score, reflux disease questionnaire (RDQ) score, and Leicester cough questionnaire (LCQ) score before and after treatment in the two groups. Clinical efficacy was also compared between the two groups.
RESULTS:
After treatment, both groups showed decreased cough symptom scores and the each item scores and total scores of RDQ (P<0.001), and increased LCQ scores (P<0.001) compare with those before treatment. The observation group exhibited lower cough symptom score and chest pain, reflux and total score of RDQ, and higher LCQ score compared to those in the control group (P<0.05). The total effective rate in the observation group was 94.9% (56/59), which was higher than 84.7% (50/59) in the control group (P<0.05).
CONCLUSION
Acupoint thread-embedding therapy of regulating governor vessel, dispersing lung, and suppressing reflux could effectively alleviate cough and reflux symptoms in patients with GERC and improve their quality of life.
Humans
;
Acupuncture Points
;
Gastroesophageal Reflux/physiopathology*
;
Male
;
Female
;
Cough/physiopathology*
;
Middle Aged
;
Aged
;
Acupuncture Therapy
;
Adult
;
Treatment Outcome
;
Lung/physiopathology*
;
Meridians

Result Analysis
Print
Save
E-mail