1.Development of a novel stability indicating RP-HPLC method for quantification of Connexin43 mimetic peptide and determination of its degradation kinetics in biological fluids
Bisht ROHIT ; Rupenthal D. ILVA ; Sreebhavan SREEVALSAN ; Jaiswal K. JAGDISH
Journal of Pharmaceutical Analysis 2017;7(6):365-373
Connexin43 mimetic peptide (Cx43MP) has been intensively investigated for its therapeutic effect in the management of inflammatory eye conditions, spinal cord injury, wound healing and ischemia-induced brain damage. Here, we report on a validated stability–indicating reversed-phase high performance liquid chromatography(RP-HPLC)method for the quantification of Cx43MP under stress conditions.These included exposure to acid/base, light, oxidation and high temperature. In addition, the degradation kinetics of the peptide were evaluated in bovine vitreous and drug-free human plasma at 37 ℃. Detection of Cx43MP was carried out at 214 nm with a retention time of 7.5 min. The method showed excellent linearity over the concentration range of 0.9–250μg/mL(R2≥0.998),and the limits of detection(LOD)and quantification(LOQ) were found to be 0.90 and 2.98 μg/mL, respectively. The accuracy of the method determined by the mean percentage recovery at 7.8, 62.5 and 250μg/mL was 96.79%, 98.25% and 99.06% with a RSD of<2.2%. Accelerated stability studies revealed that Cx43MP was more sensitive to basic conditions and completely degraded within 24 h at 37 ℃(0% recovery)and within 12 h at 80 ℃(0.34% recovery).Cx43MP was found to be more stable in bovine vitreous(t1/2slow=171.8 min)compared to human plasma(t1/2slow=39.3 min)at 37 ℃ according to the two phase degradation kinetic model. These findings are important for further pre-clinical development of Cx43MP.
2.Triazoles: a valuable insight into recent developments and biological activities.
Jagdish K SAHU ; Swastika GANGULY ; Atul KAUSHIK
Chinese Journal of Natural Medicines (English Ed.) 2013;11(5):456-465
In recent years, heterocyclic compounds, analogs, and derivatives have attracted strong interest due to their useful biological and pharmacological properties. The small and simple triazole nucleus is present in compounds aimed at evaluating new entities that possess anti-microbial, anti-tumor, antitubercular, anti-convulsant, anti-depressant, antimalarial, and anti-inflammatory activities. Triazoles display a broad range of biological activities and are found in many potent, biologically active compounds, such as trazodone (antidepressant drug), rizatriptan (antimigrane drug), hexaconazole (antifungal drug) and alprazolam (hyptonic, sedative and tranquilizer drug). So far, modifications of the triazole ring have proven highly effective with improved potency and lesser toxicity. The present review highlights the recently synthesized triazoles possessing important biological activities.
Animals
;
Antifungal Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Antineoplastic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Humans
;
Molecular Structure
;
Structure-Activity Relationship
;
Triazoles
;
chemical synthesis
;
chemistry
;
pharmacology