1.A modified mycological medium for isolation and culture of Malassezia furfur.
Kaw Bing Chua ; I L Chua ; I E Chua ; Kwai Hoe Chong ; Kerk Hsiang Chua
The Malaysian journal of pathology 2005;27(2):99-105
A mycological medium was developed for primary isolation and culture of lipophilic yeasts. It was initially based on published information of nutrients and trace components that would promote the growth of these yeasts. It was subsequently modified and adjusted to specifically promote the growth of lipophilic yeasts and simultaneously avoid the luxurious growth of other fungi and bacteria. With this medium, the conventional bacteriological procedures such as microbial streaking for pure culture and anti-microbial sensitivity testing could be carried out for these lipophilic yeasts.
Cultural
;
isolation aspects
;
growth aspects
;
microbial
;
Malassezia furfur
2.Phenotypic expression of collagen type II and collagen type I gene in monolayer culture of human auricular chondrocytes.
A N Nur Adelina ; B S Aminuddin ; S Munirah ; K H Chua ; N H Fuzina ; L Saim ; B H I Ruszymah
The Medical journal of Malaysia 2004;59 Suppl F():188-9
Cartilage is regularly needed for reconstructive surgery. Basic research in tissue engineering is necessary to develop its full potential. We presented here the expression profile of type II collagen gene and type I collagen gene in human auricular monolayer culture expansion. Cultured chondrocytes documented a reduction in the expression level of collagen type II gene whilst collagen type I gene was gradually expressed through all the passages. This study demonstrated that human auricular chondrocytes lose its phenotypic expression during monolayer culture expansion. Further studies are required to enhance cartilage specific gene expression, collagen type II throughout the in vitro culture.
Collagen
;
Genes
;
Cultural
;
monolayer
;
Human
3.Gene expression characteristic in human auricular cartilage tissue engineering.
Farah Wahida I ; Aminuddin BS ; Munirah S ; Chua KH ; Fuzina NH ; Isa MR ; Saim L ; Ruszymah BH
The Medical Journal of Malaysia 2004;59 Suppl B():190-191
This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.
Actins/genetics
;
Cartilage/transplantation
;
Cell Aging/physiology
;
Cells, Cultured
;
Chondrocytes/*cytology
;
Collagen Type I/*genetics
;
Collagen Type II/*genetics
;
Ear, External
;
Fibroblasts/cytology
;
Gene Expression/physiology
;
Mice, Nude
;
*Phenotype
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tissue Engineering/*methods
4.Gene expression characteristic in human auricular cartilage tissue engineering.
I Farah Wahida ; B S Aminuddin ; S Munirah ; K H Chua ; N H Fuzina ; M R Isa ; L Saim ; B H I Ruszymah
The Medical journal of Malaysia 2004;59 Suppl F():190-1
This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.
Gene Expression
;
Collagen
;
Cartilage
;
Tissue Engineering
;
Auricular cartilage