1.Analysis of the current situation of poor vision and wearing of glasses among junior high school students in Xi'an City
Hui GAO ; Jiaqi WANG ; Zhirong LIU ; Jiateng WANG ; Lu YE
International Eye Science 2026;26(1):174-178
AIM:To investigate the prevalence of visual impairment and its correction status among junior high school students in Xi'an, so as to provide evidence for the development of targeted myopia prevention and control strategies.METHODS: A stratified cluster sampling design was adopted. From March to May 2025, students in grades 7-9 were recruited from three schools in Xi'an, Shaanxi Province, China: Dongfang Middle School, the Middle School Attached to Xi'an University of Technology, and the Xingqing Campus of the High School Affiliated to Xi'an Jiaotong University. In total, 3 974 students were invited, including 1 726 in grade 7, 1 206 in grade 8, and 1 042 in grade 9. The visual acuity was measured monocularly using a 5 m standard logarithmic visual acuity chart, with the fellow eye occluded; the line corresponding to the smallest optotype that could be correctly identified was recorded as the visual acuity value. Non-cycloplegic autorefraction was performed with a desktop autorefractor to obtain spherical equivalent(SE)values for refractive error screening.RESULTS: This study initially included 3 974 students, of whom 32 did not participate in the vision test, resulting in 3 942 students being included in the final analysis. Among them, 3 067(77.80%)were identified with poor vision. The prevalence of myopia was 81.47%(1 746)in males and 87.55%(1 575)in females(P<0.01). A stratified analysis by grade showed myopia rates of 81.72%(1 386)in junior grade one, 84.47%(1 017)in junior grade two, and 88.10%(918)in junior grade three, demonstrating a significant upward trend with increasing grade level(χ2=19.8484, P<0.01). Among the 3 321 myopic students, 2 287 adopted corrective measures. The rates of full correction, under-correction, and non-correction among all myopic students were 48.15%(1 599), 20.71%(688), and 31.14%(1 034), respectively. The rate of non-correction was significantly higher in male students than in females(32.70% vs 29.40%, χ2=4.2222, P<0.05).CONCLUSION: The findings indicate a high prevalence of visual impairment among junior high school students in Xi'an, coupled with suboptimal spectacle-wearing and full-correction rates. There is an urgent need for collaborative efforts across society, schools, and families to implement effective interventions to slow the onset and progression of myopia in this population.
2.Pharmaceutical care for a patient with empagliflozin-induced euglycemic diabetic ketoacidosis
Lili YANG ; Qi LI ; Hui WANG ; Ruilong GAO ; Min MAO
China Pharmacy 2025;36(2):214-218
OBJECTIVE To provide a reference for the pharmaceutical care of a patient with type 2 diabetes mellitus (T2DM) and limb-girdle muscular dystrophy (LGMD) who developed euglycemic diabetic ketoacidosis (euDKA) after taking empagliflozin. METHODS Clinical pharmacists provided pharmaceutical care for a patient with T2DM and LGMD who developed euDKA after taking empagliflozin. According to the patient’s recent use of medications and his conditions, clinical pharmacists assessed the correlation between euDKA and empagliflozin as “very likely”. As to euDKA, clinical pharmacists suggested discontinuing empagliflozin and metformin, and giving intravenous infusion of 10% Glucose injection instead of 5% Glucose injection for fluid resuscitation. Clinical pharmacists monitored the patient’s laboratory indicators such as arterial blood gas analysis, blood/urine ketones and electrolytes. They assisted physicians to decide when to stop intravenous supplements of liquid and insulin. Clinical pharmacists also assisted physicians to adjust the antidiabetic drugs and educated the patient to avoid empagliflozin or other sodium- glucose linked transporter 2 inhibitors (SGLT2i). RESULTS Physicians adopted the suggestions of clinical pharmacists. After treatment, the patient’s condition improved, and he was allowed to be discharged with medication. CONCLUSIONS euDKA is a relatively rare and serious adverse reaction associated with SGLT2i, and the patients with LGMD are susceptible to euDKA. Clinical pharmacists assist physicians in developing personalized medication plans by evaluating the association between euDKA and empagliflozin, adjusting medication regimens,conducting pharmaceutical monitoring,and other pharmaceutical services. Meanwhile, they provide medication education to patients to ensure their medication safety.
3.Pharmaceutical care for a patient with empagliflozin-induced euglycemic diabetic ketoacidosis
Lili YANG ; Qi LI ; Hui WANG ; Ruilong GAO ; Min MAO
China Pharmacy 2025;36(2):214-218
OBJECTIVE To provide a reference for the pharmaceutical care of a patient with type 2 diabetes mellitus (T2DM) and limb-girdle muscular dystrophy (LGMD) who developed euglycemic diabetic ketoacidosis (euDKA) after taking empagliflozin. METHODS Clinical pharmacists provided pharmaceutical care for a patient with T2DM and LGMD who developed euDKA after taking empagliflozin. According to the patient’s recent use of medications and his conditions, clinical pharmacists assessed the correlation between euDKA and empagliflozin as “very likely”. As to euDKA, clinical pharmacists suggested discontinuing empagliflozin and metformin, and giving intravenous infusion of 10% Glucose injection instead of 5% Glucose injection for fluid resuscitation. Clinical pharmacists monitored the patient’s laboratory indicators such as arterial blood gas analysis, blood/urine ketones and electrolytes. They assisted physicians to decide when to stop intravenous supplements of liquid and insulin. Clinical pharmacists also assisted physicians to adjust the antidiabetic drugs and educated the patient to avoid empagliflozin or other sodium- glucose linked transporter 2 inhibitors (SGLT2i). RESULTS Physicians adopted the suggestions of clinical pharmacists. After treatment, the patient’s condition improved, and he was allowed to be discharged with medication. CONCLUSIONS euDKA is a relatively rare and serious adverse reaction associated with SGLT2i, and the patients with LGMD are susceptible to euDKA. Clinical pharmacists assist physicians in developing personalized medication plans by evaluating the association between euDKA and empagliflozin, adjusting medication regimens,conducting pharmaceutical monitoring,and other pharmaceutical services. Meanwhile, they provide medication education to patients to ensure their medication safety.
4.Effect of Yiqi Wenyang Huoxue Lishui Components on Cardiac Function and Mitochondrial Energy Metabolism in CHF Rats
Hui GAO ; Zeqi YANG ; Xin LIU ; Fan GAO ; Yangyang HAN ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):27-36
ObjectiveTo investigate the effects of Yiqi Wenyang Huoxue Lishui components on the cardiac function and mitochondrial energy metabolism in the rat model of chronic heart failure (CHF) and explore the underlying mechanism. MethodsThe rat model of CHF was prepared by transverse aortic constriction (TAC). Eight of the 50 SD rats were randomly selected as the sham group, and the remaining 42 underwent TAC surgery. The 24 SD rats successfully modeled were randomized into model, trimetazidine (6.3 mg·kg-1), and Yiqi Wenyang Huoxue Lishui components (60 mg·kg-1 total saponins of Astragali Radix, 10 mg·kg-1 total phenolic acids of Salviae Miltiorrhizae Radix et Rhizoma, 190 mg·kg-1 aqueous extract of Lepidii Semen, and 100 mg·kg-1 cinnamaldehyde) groups. The rats were administrated with corresponding agents by gavage, and those in the sham and model groups were administrated with the same amount of normal saline at a dose of 10 mL·kg-1 for 8 weeks. Echocardiography was used to examine the cardiac function in rats. Enzyme-linked immunosorbent assay was employed to determine the serum levels of N-terminal pro-B-type natriuretic peptide (NT-ProBNP), hypersensitive troponin(cTnI), creatine kinase (CK), lactate dehydrogenase (LD), free fatty acids (FFA), superoxide dismutase (SOD), and malondialdehyde (MDA). The colorimetric assay was employed to measure the levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in the myocardial tissue. The pathological changes in the myocardial tissue were observed by hematoxylin-eosin staining and Masson staining. The Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities in the myocardial tissue were determined by the colorimetric assay. The ultrastructural changes of myocardial mitochondria were observed by transmission electron microscopy. Western blot was employed to determine the protein levels of ATP synthase subunit delta (ATP5D), glucose transporter 4 (GLUT4), and carnitine palmitoyltransferase-1 (CPT-1). The mitochondrial complex assay kits were used to determine the activities of mitochondrial complexes Ⅰ, Ⅱ, Ⅲ, and Ⅳ. ResultsCompared with the sham group, the model group showed a loosening arrangement of cardiac fibers, fracture and necrosis of partial cardiac fibers, inflammatory cells in necrotic areas, massive blue fibrotic tissue in the myocardial interstitium, increased collagen fiber area and myocardial fibrosis, destroyed mitochondria, myofibril disarrangement, sparse myofilaments, and fractured and reduced cristae. In addition, the rats in the model group showed declined ejection fraction (EF) and fractional shortening (FS), risen left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs), elevated levels of NT-ProBNP, cTnI, CK, MDA, FFA, and LD, lowered level of SOD, down-regulated protein levels of GLUT4 and CPT-1, decreased activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and respiratory complexes Ⅰ-Ⅳ, and declined levels of ATP5D, ATP, ADP, and AMP (P<0.05, P<0.01). Compared with the model group, the Yiqi Wenyang Huoxue Lishui components and trimetazidine groups showed alleviated pathological damage of the mitochondria and mycardial tissue, risen EF and FS, declined LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs, lowered levels of NT-ProBNP, cTnI, CK, MDA, FFA, and LD, elevated level of SOD, up-regulated protein levels of GLUT4 and CPT-1, increased activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and respiratory complexes Ⅰ-Ⅳ, and elevated levels of ATP5D, ATP, ADP, and AMP (P<0.05, P<0.01). ConclusionYiqi Wenyang Huoxue Lishui components can improve the cardiac function, reduce myocardial injury, regulate glucose and lipid metabolism, optimize the utilization of substrates, and alleviate the damage of mitochondrial structure and function, thus improving the energy metabolism of the myocardium in the rat model of CHF.
5.Overview and implications of the cohort construction for autism spectrum disorders based on Internet recruitment
CHEN Xin, GAO Hui, WU De, TAO Fangbiao
Chinese Journal of School Health 2025;46(2):157-161
Abstract
The construction of autism spectrum disorders (ASD) specialty cohorts in China is still in its infancy, and the cost effectiveness is insufficient when relying on diagnostic and treatment processes of child health care to collect ample and high quality data. After 2000, the United States Simons Foundation s ASD Research Initiative, the Early ASD Risk Longitudinal Investigation (EARLI), and the British ASD Study of Infant Siblings (BASIS), which have been built based on Internet recruitment, have provided new insight for the construction of large sample ASD specialty cohorts in China. Future research can further explore and optimize the methods of Internet recruitment, and establish a more comprehensive and accurate ASD specialty cohorts.
6.Identification of core genes of osteoarthritis by bioinformatics
Xuekun ZHU ; Heng LIU ; Hui FENG ; Yunlong GAO ; Lei WEN ; Xiaosong CAI ; Ben ZHAO ; Min ZHONG
Chinese Journal of Tissue Engineering Research 2025;29(3):637-644
BACKGROUND:At present,osteoarthritis has become a major disease affecting the quality of life of the elderly,and the therapeutic effect is poor,often focusing on preventing the disease process,and the pathogenesis of osteoarthritis is still not fully understood.Bioinformatics analysis was carried out to explore the main pathogenesis of osteoarthritis and related mechanisms of gene coding regulation. OBJECTIVE:To screen core differential genes with a major role in osteoarthritis by gene expression profiling. METHODS:Datasets were downloaded from the Gene Expression Omnibus(GEO):GSE114007,GSE117999,and GSE129147.Differential genes in the GSE114007 and GSE117999 data collections were screened using R software,performing differential genes to weighted gene co-expression network analysis.The module genes most relevant to osteoarthritis were selected to perform protein interaction analysis.Candidate core genes were selected using the cytocape software.The candidate core genes were subsequently subjected to least absolute shrinkage and selection operator regression and COX analysis to identify the core genes with a key role in osteoarthritis.The accuracy of the core genes was validated using an external dataset,GSE129147. RESULTS AND CONCLUSION:(1)A total of 477 differential genes were identified,265 differential genes associated with osteoarthritis were obtained by weighted gene co-expression network analysis,and 8 candidate core genes were identified.The least absolute shrinkage and selection operator regression analysis finally yielded a differential gene ASPM with core value that was externally validated.(2)It is concluded that abnormal gene ASPM expression screened by bioinformatics plays a key central role in osteoarthritis.
7.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
8.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
9.Treatment of Insomnia Using the Method of Resolving Depression and Regulating the Middle and Tranquillising Mind
Chengyun HU ; Jun ZHANG ; Qian GUO ; Shuting DU ; Zhihao LIN ; Bing GAO ; Hui HUANG
Journal of Traditional Chinese Medicine 2025;66(12):1277-1280
To summarise the clinical experience of treating insomnia with the method of resolving depression, regulating the middle, and tranquilising mind. It is believed that the key to the pathogenesis of insomnia lies in qi depression, disharmony of qi pivot, and disharmony of qi and blood, and the core treatment is to resolve depression, regulating the middle, and tranquilising mind. The self-prescribed Jieyu Anmian Formula (解郁安眠方) could be used as the basic treatment, then modified according to the performance of the patient and syndromes. For syndrome of liver depression restricting spleen, the treatment should soothe liver and invigorate spleen, resolve depression and regulate the middle; for syndrome of liver depression and phlegm coagulation, the treatment should resolve depression and phlegm, support the earth and free the wood; for syndrome of liver depression transforming into fire, the treatment should soothe liver and clear fire, resolve depression and dysphoria; for syndrome of qi stagnation and blood stasis, the treatment should activate blood and regulate the middle, resolve depression and tranquilise mind.
10.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.


Result Analysis
Print
Save
E-mail