1.Protective effect of Jinkui Gastric Drug on experimental gastric mucosal lesion and its mechanism
Wei LIU ; Huanming HU ; Xinyi CHAO ; Cancan JIN ; Weizhong ZHAO
Chinese Traditional Patent Medicine 1992;0(10):-
AIM: To investigate the protective effects and its mechanism of Jinkui Gastric Drug(JK). METHODS: The model of gastric mucosal lesion in rats induced by hydrochloride acid-aspirin was used.The indexes of gastric mucosal lesion in JK and control groups were observed.The contents of nitric oxide(NO) and the activity of nitric oxide synthase(NOS) in blood serum and gastric tissue in rats,the levels of 6-keto-PGF_(1?),thromboxane B_2(TXB_2) in blood plasma and epidermal growth factor(EGF) in blood serum were examined. RESULTS: The index of gastric mucosal lesion after administration of JK reduced obviously.The contents of NO and the activity of NOS in serum and gastric tissue increased markedly.The levels of 6-keto-PGF_(1?),TXB_2 and EGF increased significantly. CONCLUSION: JK can protect experimental gastric mucosal lesion and its mechanism may be related to increasing the protective factors.
2.Evolution and variation of the SARS-CoV genome.
Jianfei HU ; Jing WANG ; Jing XU ; Wei LI ; Yujun HAN ; Yan LI ; Jia JI ; Jia YE ; Zhao XU ; Zizhang ZHANG ; Wei WEI ; Songgang LI ; Jun WANG ; Jian WANG ; Jun YU ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(3):216-225
Knowledge of the evolution of pathogens is of great medical and biological significance to the prevention, diagnosis, and therapy of infectious diseases. In order to understand the origin and evolution of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus), we collected complete genome sequences of all viruses available in GenBank, and made comparative analyses with the SARS-CoV. Genomic signature analysis demonstrates that the coronaviruses all take the TGTT as their richest tetranucleotide except the SARS-CoV. A detailed analysis of the forty-two complete SARS-CoV genome sequences revealed the existence of two distinct genotypes, and showed that these isolates could be classified into four groups. Our manual analysis of the BLASTN results demonstrates that the HE (hemagglutinin-esterase) gene exists in the SARS-CoV, and many mutations made it unfamiliar to us.
Amino Acid Motifs
;
Amino Acid Substitution
;
Base Composition
;
Codon
;
genetics
;
Computational Biology
;
DNA Mutational Analysis
;
Evolution, Molecular
;
Gene Transfer, Horizontal
;
Genetic Variation
;
Genome, Viral
;
Phylogeny
;
SARS Virus
;
genetics
3.Genome organization of the SARS-CoV.
Jing XU ; Jianfei HU ; Jing WANG ; Yujun HAN ; Yongwu HU ; Jie WEN ; Yan LI ; Jia JI ; Jia YE ; Zizhang ZHANG ; Wei WEI ; Songgang LI ; Jun WANG ; Jian WANG ; Jun YU ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(3):226-235
Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or developed by ourselves. Totally, 21 open reading frames (ORFs) of genes or putative uncharacterized proteins (PUPs) were predicted. Seven PUPs had not been reported previously, and two of them were predicted to contain transmembrane regions. Eight ORFs partially overlapped with or embedded into those of known genes, revealing that the SARS-CoV genome is a small and compact one with overlapped coding regions. The most striking discovery is that an ORF locates on the minus strand. We have also annotated non-coding regions and identified the transcription regulating sequences (TRS) in the intergenic regions. The analysis of TRS supports the minus strand extending transcription mechanism of coronavirus. The SNP analysis of different isolates reveals that mutations of the sequences do not affect the prediction results of ORFs.
Amino Acid Substitution
;
Base Composition
;
Base Sequence
;
Computational Biology
;
methods
;
Genome, Viral
;
Isoelectric Point
;
Models, Genetic
;
Molecular Sequence Data
;
Molecular Weight
;
Open Reading Frames
;
SARS Virus
;
genetics
;
Sequence Analysis
;
Transcription, Genetic
4.The C-terminal portion of the nucleocapsid protein demonstrates SARS-CoV antigenicity.
Guozhen LIU ; Shaohui HU ; Yongwu HU ; Peng CHEN ; Jianning YIN ; Jie WEN ; Jingqiang WANG ; Liang LIN ; Jinxiu LIU ; Bo YOU ; Ye YIN ; Shuting LI ; Hao WANG ; Yan REN ; Jia JI ; Xiaoqian ZHAO ; Yongqiao SUN ; Xiaowei ZHANG ; Jianqiu FANG ; Jian WANG ; Siqi LIU ; Jun YU ; Heng ZHU ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(3):193-197
In order to develop clinical diagnostic tools for rapid detection of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) and to identify candidate proteins for vaccine development, the C-terminal portion of the nucleocapsid (NC) gene was amplified using RT-PCR from the SARS-CoV genome, cloned into a yeast expression vector (pEGH), and expressed as a glutathione S-transferase (GST) and Hisx6 double-tagged fusion protein under the control of an inducible promoter. Western analysis on the purified protein confirmed the expression and purification of the NC fusion proteins from yeast. To determine its antigenicity, the fusion protein was challenged with serum samples from SARS patients and normal controls. The NC fusion protein demonstrated high antigenicity with high specificity, and therefore, it should have great potential in designing clinical diagnostic tools and provide useful information for vaccine development.
Antigens, Viral
;
immunology
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay
;
Genetic Vectors
;
Genome, Viral
;
Humans
;
Nucleocapsid Proteins
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
genetics
;
isolation & purification
;
metabolism
;
SARS Virus
;
genetics
;
immunology
;
Yeasts
;
genetics
5.The structure analysis and antigenicity study of the N protein of SARS-CoV.
Jingqiang WANG ; Jia JI ; Jia YE ; Xiaoqian ZHAO ; Jie WEN ; Wei LI ; Jianfei HU ; Dawei LI ; Min SUN ; Haipan ZENG ; Yongwu HU ; Xiangjun TIAN ; Xuehai TAN ; Ningzhi XU ; Changqing ZENG ; Jian WANG ; Shengli BI ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(2):145-154
The Coronaviridae family is characterized by a nucleocapsid that is composed of the genome RNA molecule in combination with the nucleoprotein (N protein) within a virion. The most striking physiochemical feature of the N protein of SARS-CoV is that it is a typical basic protein with a high predicted pI and high hydrophilicity, which is consistent with its function of binding to the ribophosphate backbone of the RNA molecule. The predicted high extent of phosphorylation of the N protein on multiple candidate phosphorylation sites demonstrates that it would be related to important functions, such as RNA-binding and localization to the nucleolus of host cells. Subsequent study shows that there is an SR-rich region in the N protein and this region might be involved in the protein-protein interaction. The abundant antigenic sites predicted in the N protein, as well as experimental evidence with synthesized polypeptides, indicate that the N protein is one of the major antigens of the SARS-CoV. Compared with other viral structural proteins, the low variation rate of the N protein with regards to its size suggests its importance to the survival of the virus.
Amino Acid Motifs
;
genetics
;
Amino Acid Sequence
;
Antigens, Viral
;
immunology
;
Base Composition
;
Base Sequence
;
Cluster Analysis
;
Computational Biology
;
DNA Primers
;
Enzyme-Linked Immunosorbent Assay
;
Genetic Variation
;
Molecular Sequence Data
;
Nucleocapsid Proteins
;
genetics
;
immunology
;
metabolism
;
Phosphorylation
;
SARS Virus
;
genetics
;
Sequence Analysis, DNA
6.The E protein is a multifunctional membrane protein of SARS-CoV.
Qingfa WU ; Yilin ZHANG ; Hong LÜ ; Jing WANG ; Ximiao HE ; Yong LIU ; Chen YE ; Wei LIN ; Jianfei HU ; Jia JI ; Jing XU ; Jie YE ; Yongwu HU ; Wenjun CHEN ; Songgang LI ; Jun WANG ; Jian WANG ; Shengli BI ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(2):131-144
The E (envelope) protein is the smallest structural protein in all coronaviruses and is the only viral structural protein in which no variation has been detected. We conducted genome sequencing and phylogenetic analyses of SARS-CoV. Based on genome sequencing, we predicted the E protein is a transmembrane (TM) protein characterized by a TM region with strong hydrophobicity and alpha-helix conformation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in the carboxyl-terminal region of the E protein that appears to form three disulfide bonds with another segment of corresponding cysteines in the carboxyl-terminus of the S (spike) protein. These bonds point to a possible structural association between the E and S proteins. Our phylogenetic analyses of the E protein sequences in all published coronaviruses place SARS-CoV in an independent group in Coronaviridae and suggest a non-human animal origin.
Amino Acid Sequence
;
Base Sequence
;
Cluster Analysis
;
Codon
;
genetics
;
Gene Components
;
Genome, Viral
;
Membrane Glycoproteins
;
metabolism
;
Membrane Proteins
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Phylogeny
;
Protein Conformation
;
SARS Virus
;
genetics
;
Sequence Alignment
;
Sequence Analysis, DNA
;
Sequence Homology
;
Spike Glycoprotein, Coronavirus
;
Viral Envelope Proteins
;
genetics
;
metabolism
7.The M protein of SARS-CoV: basic structural and immunological properties.
Yongwu HU ; Jie WEN ; Lin TANG ; Haijun ZHANG ; Xiaowei ZHANG ; Yan LI ; Jing WANG ; Yujun HAN ; Guoqing LI ; Jianping SHI ; Xiangjun TIAN ; Feng JIANG ; Xiaoqian ZHAO ; Jun WANG ; Siqi LIU ; Changqing ZENG ; Jian WANG ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(2):118-130
We studied structural and immunological properties of the SARS-CoV M (membrane) protein, based on comparative analyses of sequence features, phylogenetic investigation, and experimental results. The M protein is predicted to contain a triple-spanning transmembrane (TM) region, a single N-glycosylation site near its N-terminus that is in the exterior of the virion, and a long C-terminal region in the interior. The M protein harbors a higher substitution rate (0.6% correlated to its size) among viral open reading frames (ORFs) from published data. The four substitutions detected in the M protein, which cause non-synonymous changes, can be classified into three types. One of them results in changes of pI (isoelectric point) and charge, affecting antigenicity. The second changes hydrophobicity of the TM region, and the third one relates to hydrophilicity of the interior structure. Phylogenetic tree building based on the variations of the M protein appears to support the non-human origin of SARS-CoV. To investigate its immunogenicity, we synthesized eight oligopeptides covering 69.2% of the entire ORF and screened them by using ELISA (enzyme-linked immunosorbent assay) with sera from SARS patients. The results confirmed our predictions on antigenic sites.
Amino Acid Sequence
;
Base Sequence
;
Cluster Analysis
;
Enzyme-Linked Immunosorbent Assay
;
Immunoassay
;
Molecular Sequence Data
;
Mutation
;
genetics
;
Oligopeptides
;
Phylogeny
;
Protein Structure, Tertiary
;
SARS Virus
;
genetics
;
Sequence Alignment
;
Sequence Analysis, DNA
;
Viral Matrix Proteins
;
chemistry
;
genetics
;
immunology
8.Gene identification and expression analysis of 86,136 Expressed Sequence Tags (EST) from the rice genome.
Yan ZHOU ; Jiabin TANG ; Michael G WALKER ; Xiuqing ZHANG ; Jun WANG ; Songnian HU ; Huayong XU ; Yajun DENG ; Jianhai DONG ; Lin YE ; Li LIN ; Jun LI ; Xuegang WANG ; Hao XU ; Yibin PAN ; Wei LIN ; Wei TIAN ; Jing LIU ; Liping WEI ; Siqi LIU ; Huanming YANG ; Jun YU ; Jian WANG
Genomics, Proteomics & Bioinformatics 2003;1(1):26-42
Expressed Sequence Tag (EST) analysis has pioneered genome-wide gene discovery and expression profiling. In order to establish a gene expression index in the rice cultivar indica, we sequenced and analyzed 86,136 ESTs from nine rice cDNA libraries from the super hybrid cultivar LYP9 and its parental cultivars. We assembled these ESTs into 13,232 contigs and leave 8,976 singletons. Overall, 7,497 sequences were found similar to existing sequences in GenBank and 14,711 are novel. These sequences are classified by molecular function, biological process and pathways according to the Gene Ontology. We compared our sequenced ESTs with the publicly available 95,000 ESTs from japonica, and found little sequence variation, despite the large difference between genome sequences. We then assembled the combined 173,000 rice ESTs for further analysis. Using the pooled ESTs, we compared gene expression in metabolism pathway between rice and Arabidopsis according to KEGG. We further profiled gene expression patterns in different tissues, developmental stages, and in a conditional sterile mutant, after checking the libraries are comparable by means of sequence coverage. We also identified some possible library specific genes and a number of enzymes and transcription factors that contribute to rice development.
Arabidopsis
;
genetics
;
DNA, Complementary
;
metabolism
;
Databases as Topic
;
Expressed Sequence Tags
;
Gene Library
;
Genome, Plant
;
Genomics
;
methods
;
Multigene Family
;
Open Reading Frames
;
Oryza
;
genetics
;
Quality Control
;
Software
9.Complete genome sequences of the SARS-CoV: the BJ Group (Isolates BJ01-BJ04).
Shengli BI ; E'de QIN ; Zuyuan XU ; Wei LI ; Jing WANG ; Yongwu HU ; Yong LIU ; Shumin DUAN ; Jianfei HU ; Yujun HAN ; Jing XU ; Yan LI ; Yao YI ; Yongdong ZHOU ; Wei LIN ; Hong XU ; Ruan LI ; Zizhang ZHANG ; Haiyan SUN ; Jingui ZHU ; Man YU ; Baochang FAN ; Qingfa WU ; Wei LIN ; Lin TANG ; Baoan YANG ; Guoqing LI ; Wenming PENG ; Wenjie LI ; Tao JIANG ; Yajun DENG ; Bohua LIU ; Jianping SHI ; Yongqiang DENG ; Wei WEI ; Hong LIU ; Zongzhong TONG ; Feng ZHANG ; Yu ZHANG ; Cui'e WANG ; Yuquan LI ; Jia YE ; Yonghua GAN ; Jia JI ; Xiaoyu LI ; Xiangjun TIAN ; Fushuang LU ; Gang TAN ; Ruifu YANG ; Bin LIU ; Siqi LIU ; Songgang LI ; Jun WANG ; Jian WANG ; Wuchun CAO ; Jun YU ; Xiaoping DONG ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(3):180-192
Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates BJ01, BJ02, BJ03, and BJ04) of the SARS-CoV. It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identified from the BJ group, 32 are non-synonymous changes at the amino acid level. Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions.
Genome, Viral
;
Haplotypes
;
Humans
;
Mutation
;
Open Reading Frames
;
Phylogeny
;
SARS Virus
;
genetics
10.A genome sequence of novel SARS-CoV isolates: the genotype, GD-Ins29, leads to a hypothesis of viral transmission in South China.
E'de QIN ; Xionglei HE ; Wei TIAN ; Yong LIU ; Wei LI ; Jie WEN ; Jingqiang WANG ; Baochang FAN ; Qingfa WU ; Guohui CHANG ; Wuchun CAO ; Zuyuan XU ; Ruifu YANG ; Jing WANG ; Man YU ; Yan LI ; Jing XU ; Bingyin SI ; Yongwu HU ; Wenming PENG ; Lin TANG ; Tao JIANG ; Jianping SHI ; Jia JI ; Yu ZHANG ; Jia YE ; Cui'e WANG ; Yujun HAN ; Jun ZHOU ; Yajun DENG ; Xiaoyu LI ; Jianfei HU ; Caiping WANG ; Chunxia YAN ; Qingrun ZHANG ; Jingyue BAO ; Guoqing LI ; Weijun CHEN ; Lin FANG ; Changfeng LI ; Meng LEI ; Dawei LI ; Wei TONG ; Xiangjun TIAN ; Jin WANG ; Bo ZHANG ; Haiqing ZHANG ; Yilin ZHANG ; Hui ZHAO ; Xiaowei ZHANG ; Shuangli LI ; Xiaojie CHENG ; Xiuqing ZHANG ; Bin LIU ; Changqing ZENG ; Songgang LI ; Xuehai TAN ; Siqi LIU ; Wei DONG ; Jun WANG ; Gane Ka-Shu WONG ; Jun YU ; Jian WANG ; Qingyu ZHU ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(2):101-107
We report a complete genomic sequence of rare isolates (minor genotype) of the SARS-CoV from SARS patients in Guangdong, China, where the first few cases emerged. The most striking discovery from the isolate is an extra 29-nucleotide sequence located at the nucleotide positions between 27,863 and 27,864 (referred to the complete sequence of BJ01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream of the N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29, suggests a significant genetic event and differentiates it from the previously reported genotype, the dominant form among all sequenced SARS-CoV isolates. A 17-nt segment of this extra sequence is identical to a segment of the same size in two human mRNA sequences that may interfere with viral replication and transcription in the cytosol of the infected cells. It provides a new avenue for the exploration of the virus-host interaction in viral evolution, host pathogenesis, and vaccine development.
Base Sequence
;
China
;
Cluster Analysis
;
Gene Components
;
Genetic Variation
;
Genome, Viral
;
Genotype
;
Molecular Sequence Data
;
Phylogeny
;
Reverse Transcriptase Polymerase Chain Reaction
;
SARS Virus
;
genetics
;
Sequence Analysis, DNA
;
Severe Acute Respiratory Syndrome
;
genetics