1.Environmental Assessment for Water of Yangtse River of Source Area of Lantsang,Yellow and Yangtse River
Sujin LU ; Hongxiao SHI ; Peng LI
Journal of Environment and Health 2007;0(07):-
Objective To know the situation of the water environment of Yangtse river of source area of Lantsang,Yellow and Yangtse River,and provide the theoretical basis for protecting the biosystem of this area. Methods Ten monitoring sections were selected in the investigated areas and the water samples were collected in May 2008,August 2008,October 2008 respectively. The sampling,determination and evaluation in the investigation were performed according to the related standard regulations. Results The water temperature was 8.5 ℃,pH value was 8.27,the index of KMnO4 was 0.73 mg/L,the concentrations of COD, BOD5, NH4-N, fluoride, sulfide, total phosphoric, Cr6+, phenol, Hg, petroleum were 9.1,2,0.334,0.166,0.02,0.03,0.004,0.002,0.000 01, 0.02 mg/L,respectirely; the count of fecal coliform
2.Cloning and expressing of cyclophilin B gene from Schistosoma japonnicum and the analysis of immunoprotective effect.
Jinbiao PENG ; Hongxiao HAN ; Yang HONG ; Yan WANG ; Fanji GUO ; Yaojun SHI ; Zhiqiang FU ; Jinming LIU ; Guofeng CHENG ; Jiaojiao LIN
Chinese Journal of Biotechnology 2010;26(3):317-323
The present study was intend to clone and express the cDNA encoding Cyclophilin B (CyPB) of Schistosoma japonicum, its preliminary biological function and further immunoprotective effect against schistosome infection in mice. RT-PCR technique was applied to amplify a full-length cDNA encoding protein Cyclophilin B (Sj CyPB) from schistosomula cDNA. The expression profiles of Sj CyPB were determined by Real-time PCR using the template cDNAs isolated from 7, 13, 18, 23, 32 and 42 days parasites. The cDNA containing the Open Reading Frame of CyPB was then subcloned into a pGEX-6P-1 vector and transformed into competent Escherichia coli BL21 for expressing. The recombinant protein was renaturated, purified and its antigenicity were detected by Western blotting, and the immunoprotective effect induced by recombinant Sj CyPB was evaluated in Balb/C mice. The cDNA containing the ORF of Sj CyPB was cloned with the length of 672 base pairs, encoding 223 amino acids. Real-time PCR analysis revealed that the gene had the highest expression in 18-day schistosomula, suggesting that Sj CyPB was schistosomula differentially expressed gene. The recombinant protein showed a good antigenicity detected by Western blotting. Animal experiment indicated that the vaccination of recombinant CyPB protein in mice led to 31.5% worm and 41.01% liver egg burden reduction, respectively, compared with those of the control. A full-length cDNA differentially expressed in schistosomula was obtained. The recombinant Sj CyPB protein could induce partial protection against schistosome infection.
Animals
;
Antigens, Helminth
;
immunology
;
Cloning, Molecular
;
Cyclophilins
;
biosynthesis
;
genetics
;
immunology
;
DNA, Complementary
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Genetic Vectors
;
genetics
;
Immunization
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
immunology
;
Schistosoma japonicum
;
genetics
;
immunology
;
Schistosomiasis japonica
;
prevention & control
;
Vaccines, Synthetic
;
biosynthesis
;
immunology
3.Cloning, expression and characterization of a gene encoding alpha2 subunit of the proteasome in Schistosoma japonicum.
Yang HONG ; Hongxiao HAN ; Jinbiao PENG ; Ye LI ; Yaojun SHI ; Zhiqiang FU ; Jinming LIU ; Xiangrui LI ; Jiaojiao LIN
Chinese Journal of Biotechnology 2010;26(4):509-516
The 26S proteasome is a proteolytic complex responsible for the degradation of the vast majority of eukaryotic proteins. Regulated proteolysis by the proteasome is thought to influence cell cycle progression, transcriptional control, and other critical cellular processes. A novel Schistosoma japonicum gene (GenBank Accession No. AY813725) proteasome alpha2 subunit (SjPSMA2) was cloned. Sequence analysis revealed that the ORF of SjPSMA2 gene contains 708 nucleotides encoding 235 amino acids, and the molecular weight was estimated to be 25.84 kDa. Real-time PCR analysis showed that this gene expressed in 7 d, 13 d, 18 d, 23 d, 32 d and 42 d schistosoma. The mRNA level of SjPSMA2 was lower in 7 d and 23 d schistosomulum than that in other stages. The SjPSMA2 cDNA fragment was subcloned into an expression vector pET28a(+) and transformed into E. coli BL21 (DE3) cells. After induction with IPTCQ the 30 kDa fusion protein was produced as included bodies. Western-blotting revealed that the fusion protein could be recognized by the rabbit serum anti-Schistosoma japonicum adult worm antigen preparation, and the protein in native could be detected. After immunization of BALB/c mice with the fusion protein, the reduction rates of worm counts and liver egg counts were 12.33% and 35.23%. ELISA results revealed that the vaccinated group showed a significant increase in the level of IgG antibody. This study provided an important basis for investigating the regulation mechanism of the proteasome during the development of Schistosoma japonicum.
Animals
;
Antibodies, Helminth
;
blood
;
Base Sequence
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Genes, Helminth
;
Helminth Proteins
;
genetics
;
metabolism
;
Immunization
;
Liver
;
parasitology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Molecular Sequence Data
;
Parasite Egg Count
;
Proteasome Endopeptidase Complex
;
biosynthesis
;
genetics
;
immunology
;
Rabbits
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
immunology
;
Schistosoma japonicum
;
genetics
;
metabolism
;
Vaccines, Synthetic
;
immunology
4.Circuit-Specific Control of Blood Pressure by PNMT-Expressing Nucleus Tractus Solitarii Neurons.
Shirui JUN ; Xianhong OU ; Luo SHI ; Hongxiao YU ; Tianjiao DENG ; Jinting CHEN ; Xiaojun NIE ; Yinchao HAO ; Yishuo SHI ; Wei LIU ; Yanming TIAN ; Sheng WANG ; Fang YUAN
Neuroscience Bulletin 2023;39(8):1193-1209
The nucleus tractus solitarii (NTS) is one of the morphologically and functionally defined centers that engage in the autonomic regulation of cardiovascular activity. Phenotypically-characterized NTS neurons have been implicated in the differential regulation of blood pressure (BP). Here, we investigated whether phenylethanolamine N-methyltransferase (PNMT)-expressing NTS (NTSPNMT) neurons contribute to the control of BP. We demonstrate that photostimulation of NTSPNMT neurons has variable effects on BP. A depressor response was produced during optogenetic stimulation of NTSPNMT neurons projecting to the paraventricular nucleus of the hypothalamus, lateral parabrachial nucleus, and caudal ventrolateral medulla. Conversely, photostimulation of NTSPNMT neurons projecting to the rostral ventrolateral medulla produced a robust pressor response and bradycardia. In addition, genetic ablation of both NTSPNMT neurons and those projecting to the rostral ventrolateral medulla impaired the arterial baroreflex. Overall, we revealed the neuronal phenotype- and circuit-specific mechanisms underlying the contribution of NTSPNMT neurons to the regulation of BP.
Solitary Nucleus/metabolism*
;
Blood Pressure/physiology*
;
Phenylethanolamine N-Methyltransferase/metabolism*
;
Neurons/metabolism*
;
Paraventricular Hypothalamic Nucleus/metabolism*
5.A Neural Circuit Mechanism Controlling Breathing by Leptin in the Nucleus Tractus Solitarii.
Hongxiao YU ; Luo SHI ; Jinting CHEN ; Shirui JUN ; Yinchao HAO ; Shuang WANG ; Congrui FU ; Xiang ZHANG ; Haiyan LU ; Sheng WANG ; Fang YUAN
Neuroscience Bulletin 2022;38(2):149-165
Leptin, an adipocyte-derived peptide hormone, has been shown to facilitate breathing. However, the central sites and circuit mechanisms underlying the respiratory effects of leptin remain incompletely understood. The present study aimed to address whether neurons expressing leptin receptor b (LepRb) in the nucleus tractus solitarii (NTS) contribute to respiratory control. Both chemogenetic and optogenetic stimulation of LepRb-expressing NTS (NTSLepRb) neurons notably activated breathing. Moreover, stimulation of NTSLepRb neurons projecting to the lateral parabrachial nucleus (LPBN) not only remarkably increased basal ventilation to a level similar to that of the stimulation of all NTSLepRb neurons, but also activated LPBN neurons projecting to the preBötzinger complex (preBötC). By contrast, ablation of NTSLepRb neurons projecting to the LPBN notably eliminated the enhanced respiratory effect induced by NTSLepRb neuron stimulation. In brainstem slices, bath application of leptin rapidly depolarized the membrane potential, increased the spontaneous firing rate, and accelerated the Ca2+ transients in most NTSLepRb neurons. Therefore, leptin potentiates breathing in the NTS most likely via an NTS-LPBN-preBötC circuit.
Leptin/pharmacology*
;
Membrane Potentials
;
Neurons/metabolism*
;
Solitary Nucleus/metabolism*