1.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role.
2.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role.
3.Mechanism of Shengmai Injection Against Cerebral Ischemia Based on Proteomics
Jingtong LIU ; Shaowei HU ; Mengli CHANG ; Jing XU ; Qingqing CAI ; Xinghong LI ; Liying TANG ; Huanhuan WANG ; Hongwei WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):57-67
ObjectiveTo evaluate pharmacological effects of Shengmai injection(SMI)on cerebral ischemia and study its neuroprotective mechanism. MethodsMale specific pathogen-free (SPF) Sprague-Dawley (SD) rats were randomly divided into a sham group, a model group, a low-dose SMI group(3 mL·kg-1), a middle-dose SMI group(6 mL·kg-1), a high-dose SMI group(12 mL·kg-1), and a Ginaton group(4 mL·kg-1)according to the random number table method, with 12 rats in each group. The rat model of cerebral ischemia-reperfusion(MCAO/R)was prepared via the suture method. The administration groups were intraperitoneally injected with corresponding concentrations of SMI or Ginaton injection after reperfusion, which was conducted for 3 consecutive days. The sham group and model group were administered the equivalent volume of physiological saline. The pharmacological effects of SMI on brain injury in MCAO/R rats were evaluated by neurological function scores, cerebral infarction area, hematoxylin-eosin (HE) staining, Nissl staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and Western blot. The dominant link and key protein of SMI treating cerebral injury were explored using proteomic analysis. The related mechanisms of SMI were further validated using enzyme-linked immunosorbent assay (ELISA), Western blot, and chloride ion fluorescence probe with oxygen-glucose deprivation/reoxygenation(OGD/R)-treated PC12 cells and MCAO/R rats. ResultsCompared with the sham group, the model group showed significantly increased neurological function scores, cerebral infarction area, neuronal apoptosis rate, and expression levels of apoptosis related proteins (P<0.05, P<0.01)and significantly decreased density of Nissl bodies and neurons(P<0.01). Compared with the model group, the SMI groups exhibited significantly decreased neurological function scores, cerebral infarction area, neuronal apoptosis rate, and expression levels of apoptosis related proteins (P<0.05, P<0.01)and significantly increased density of Nissl bodies and neurons (P<0.05). The proteomic analysis results showed that oxidative stress and inflammatory response were important processes of SMI intervening in MCAO/R injury, and the chloride intracellular channel protein 1 (CLIC1) was one of key proteins in its action network. The levels of representative indicators of oxidative stress and inflammatory response in the MCAO/R rats of the SMI groups were significantly reduced, compared with those in the model group(P<0.05, P<0.01), and the expression levels of CLIC1 and downstream NOD-like receptor protein 3 (NLRP3) decreased (P<0.01). In addition, the experimental results based on the OGD/R PC12 cells showed that SMI significantly increased the cell survival rate(P<0.01) and significantly decreased the intracellular chloride ion concentration(P<0.05). ConclusionSMI has neuroprotective effects. Oxidative stress and inflammatory response are key processes of SMI intervening in MCAO/R injury. The potential mechanism is closely related to the regulation of CLIC1.
4.Molecular Characteristics of Prognosis and Chemotherapy Response in Breast Cancer: Biomarker Identification Based on Gene Mutations and Pathway
Liyan LI ; Hongwei LYU ; Qian CHEN ; Yating BAI ; Jing YU ; Ruigang CAI
Journal of Breast Cancer 2025;28(2):61-71
Purpose:
This study aimed to investigate the molecular characteristics associated with better prognosis in breast cancer.
Methods:
We performed targeted sequencing of 962 genes in 56 samples, categorizing them into long-term and short-term survival groups as well as chemotherapy-sensitive and chemotherapy-resistant groups for further analyses.
Results:
The results indicated that the tumor mutational burden values were significantly higher in the short-term survival and chemotherapy-resistant groups (p = 0.008 and p = 0.003, respectively). Somatic mutation analysis revealed that the mutation frequencies of BCL9L and WHSC1 were significantly lower in the long-term survival group than those in the short-term survival group (p = 0.029 and p = 0.024, respectively). CREB-regulated transcription coactivator 1 (CRTC1) mutations occurred significantly more frequently in the chemotherapy-resistant group (p = 0.027) and were associated with shorter progression-free survival (p = 0.036).Signature weighting analysis showed a significant increase in Signature.3, which is associated with homologous recombination repair deficiency in the chemotherapy-sensitive group (p = 0.045). Conversely, signatures related to effective DNA repair mechanisms, Signature.1 and Signature.15, were significantly reduced (p = 0.002 and p < 0.001, respectively). Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that gene mutations were significantly enriched in the JAK-STAT signaling pathway.
Conclusion
This study, through intergroup comparative analysis, found that immunotherapy (using programmed death 1/programmed death-ligand 1 inhibitors) may improve the prognosis of patients with short survival and chemotherapy resistance. Additionally, the study revealed that mutations in BCL9L and WHSC1 could serve as biomarkers for breast cancer prognosis, while CRTC1 mutations and Signature.3 could predict chemotherapy response. The study also found that the JAK-STAT pathway might be a potential therapeutic target for chemotherapy resistance. Therefore, this study identifies molecular characteristics that influence the prognosis of breast cancer patients, providing important theoretical insights for the development of personalized treatment strategies.
5.Molecular Characteristics of Prognosis and Chemotherapy Response in Breast Cancer: Biomarker Identification Based on Gene Mutations and Pathway
Liyan LI ; Hongwei LYU ; Qian CHEN ; Yating BAI ; Jing YU ; Ruigang CAI
Journal of Breast Cancer 2025;28(2):61-71
Purpose:
This study aimed to investigate the molecular characteristics associated with better prognosis in breast cancer.
Methods:
We performed targeted sequencing of 962 genes in 56 samples, categorizing them into long-term and short-term survival groups as well as chemotherapy-sensitive and chemotherapy-resistant groups for further analyses.
Results:
The results indicated that the tumor mutational burden values were significantly higher in the short-term survival and chemotherapy-resistant groups (p = 0.008 and p = 0.003, respectively). Somatic mutation analysis revealed that the mutation frequencies of BCL9L and WHSC1 were significantly lower in the long-term survival group than those in the short-term survival group (p = 0.029 and p = 0.024, respectively). CREB-regulated transcription coactivator 1 (CRTC1) mutations occurred significantly more frequently in the chemotherapy-resistant group (p = 0.027) and were associated with shorter progression-free survival (p = 0.036).Signature weighting analysis showed a significant increase in Signature.3, which is associated with homologous recombination repair deficiency in the chemotherapy-sensitive group (p = 0.045). Conversely, signatures related to effective DNA repair mechanisms, Signature.1 and Signature.15, were significantly reduced (p = 0.002 and p < 0.001, respectively). Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that gene mutations were significantly enriched in the JAK-STAT signaling pathway.
Conclusion
This study, through intergroup comparative analysis, found that immunotherapy (using programmed death 1/programmed death-ligand 1 inhibitors) may improve the prognosis of patients with short survival and chemotherapy resistance. Additionally, the study revealed that mutations in BCL9L and WHSC1 could serve as biomarkers for breast cancer prognosis, while CRTC1 mutations and Signature.3 could predict chemotherapy response. The study also found that the JAK-STAT pathway might be a potential therapeutic target for chemotherapy resistance. Therefore, this study identifies molecular characteristics that influence the prognosis of breast cancer patients, providing important theoretical insights for the development of personalized treatment strategies.
6.Molecular Characteristics of Prognosis and Chemotherapy Response in Breast Cancer: Biomarker Identification Based on Gene Mutations and Pathway
Liyan LI ; Hongwei LYU ; Qian CHEN ; Yating BAI ; Jing YU ; Ruigang CAI
Journal of Breast Cancer 2025;28(2):61-71
Purpose:
This study aimed to investigate the molecular characteristics associated with better prognosis in breast cancer.
Methods:
We performed targeted sequencing of 962 genes in 56 samples, categorizing them into long-term and short-term survival groups as well as chemotherapy-sensitive and chemotherapy-resistant groups for further analyses.
Results:
The results indicated that the tumor mutational burden values were significantly higher in the short-term survival and chemotherapy-resistant groups (p = 0.008 and p = 0.003, respectively). Somatic mutation analysis revealed that the mutation frequencies of BCL9L and WHSC1 were significantly lower in the long-term survival group than those in the short-term survival group (p = 0.029 and p = 0.024, respectively). CREB-regulated transcription coactivator 1 (CRTC1) mutations occurred significantly more frequently in the chemotherapy-resistant group (p = 0.027) and were associated with shorter progression-free survival (p = 0.036).Signature weighting analysis showed a significant increase in Signature.3, which is associated with homologous recombination repair deficiency in the chemotherapy-sensitive group (p = 0.045). Conversely, signatures related to effective DNA repair mechanisms, Signature.1 and Signature.15, were significantly reduced (p = 0.002 and p < 0.001, respectively). Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that gene mutations were significantly enriched in the JAK-STAT signaling pathway.
Conclusion
This study, through intergroup comparative analysis, found that immunotherapy (using programmed death 1/programmed death-ligand 1 inhibitors) may improve the prognosis of patients with short survival and chemotherapy resistance. Additionally, the study revealed that mutations in BCL9L and WHSC1 could serve as biomarkers for breast cancer prognosis, while CRTC1 mutations and Signature.3 could predict chemotherapy response. The study also found that the JAK-STAT pathway might be a potential therapeutic target for chemotherapy resistance. Therefore, this study identifies molecular characteristics that influence the prognosis of breast cancer patients, providing important theoretical insights for the development of personalized treatment strategies.
7.Nomogram and machine learning models for predicting in-hospital mortality in sepsis patients with deep vein thrombosis.
Hongwei DUAN ; Huaizheng LIU ; Chuanzheng SUN ; Jing QI
Journal of Central South University(Medical Sciences) 2025;50(6):1013-1029
OBJECTIVES:
Global epidemiological data indicate that 20% to 30% of intensive care unit (ICU) sepsis patients progress to deep vein thrombosis (DVT) due to coagulopathy, with an associated mortality rate of 25% to 40%. Existing prognostic tools have limitations. This study aims to develop and validate nomogram and machine learning models to predict in-hospital mortality in sepsis patients with DVT and assess their clinical applicability.
METHODS:
This multicenter retrospective study drew on data from the Medical Information Mart for Intensive Care IV (MIMIC-IV; n=2 235), the eICU Collaborative Research Database (eICU-CRD; n=1 274), and the Patient Admission Dataset from the ICU of Third Xiangya Hospital, Central South University (CSU-XYS-ICU; n=107). MIMIC-IV was split into a training set (n=1 584) and internal validation set (n=651), with the remaining datasets used for external validation. Predictors were selected via least absolute shrinkage and selection operator (LASSO) regression and Bayesian Information Criterion (BIC), and a nomogram model was constructed. An extreme gradient boosting (XGBoost) algorithm was used to build the machine learning model. Model performance was assessed by the concordance index (C-index), calibration curves, Brier score, decision curve analysis (DCA), and net reclassification improvement index (NRI).
RESULTS:
Five key predictors, age [odds ratio (OR)=1.02, 95% CI 1.01 to 1.03, P<0.001], minimum activated partial thromboplastin (APTT; OR=1.09, 95% CI 1.08 to 1.11, P<0.001), maximum APTT (OR=1.01, 95% CI 1.00 to 1.01, P<0.001), maximum lactate (OR=1.56, 95% CI 1.39 to 1.75, P<0.001), and maximum serum creatinine (OR=2.03, 95% CI 1.79 to 2.30, P<0.001), were included in the nomogram. The model showed robust performance in internal validation (C-index=0.845, 95% CI 0.811 to 0.879) and external validation (eICU-CRD: C-index=0.827, 95% CI 0.800 to 0.854; CSU-XYS-ICU: C-index=0.779, 95% CI 0.687 to 0.871). Calibration curves indicated good agreement between predicted and observed outcomes (Brier score<0.25), and DCA confirmed clinical benefit. The XGBoost model achieved an area under the receiver operating characteristic curve (AUC) of 0.982 (95% CI 0.969 to 0.985) in the training set, but performance declined in external validation (eICU-CRD, AUC=0.825, 95% CI 0.817 to 0.861; CSU-XYS-ICU, AUC=0.766, 95% CI 0.700 to 0.873), though it remained above clinical thresholds. Net reclassification improvement was slightly lower for XGBoost compared with the nomogram (NRI=0.58).
CONCLUSIONS
Both the nomogram and XGBoost models effectively predict in-hospital mortality in sepsis patients with DVT. However, the nomogram offers superior generalizability and clinical usability. Its visual scoring system provides a quantitative tool for identifying high-risk patients and implementing individualized interventions.
Humans
;
Sepsis/complications*
;
Machine Learning
;
Nomograms
;
Venous Thrombosis/complications*
;
Retrospective Studies
;
Hospital Mortality
;
Male
;
Female
;
Middle Aged
;
Aged
;
Intensive Care Units
;
Prognosis
;
Bayes Theorem
8.Research progress in clinical diagnosis and treatment of sepsis-associated encephalopathy.
Qi WANG ; Hongwei MA ; You WU ; Jing LI ; Xijing ZHANG
Chinese Critical Care Medicine 2025;37(9):878-884
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, referring to a diffuse brain dysfunction caused by sepsis in the absence of direct central nervous system (CNS) infection. SAE occurs in up to 70% of patients with sepsis. Globally, the annual incidence of sepsis ranges from 30.0 to 48.9 million cases, resulting in approximately 11 million deaths per year, which accounts for 20% of all global mortalities. SAE is identified as an independent risk factor contributing to the increased mortality rate among these patients. Early diagnosis of SAE and related cerebral protection interventions hold significant clinical importance. Currently, the main indicators of brain function for sepsis patients include Glasgow coma score (GCS), confusion assessment method for the intensive care unit (CAM-ICU), electroencephalogram (EEG), brain CT or magnetic resonance imaging (MRI) and other related imaging changes, which have the problems of low sensitivity, poor specificity, and non-objective evaluation of the results of the diagnosis of SAE. This article focuses on the latest progress in the pathogenesis of SAE and systematically reviews potential biomarkers related to the onset of SAE from multiple aspects, including inflammatory markers, endothelial and neuronal injury markers, and metabolic markers. This will provide new insights for the clinical diagnosis and treatment of SAE.
Humans
;
Sepsis-Associated Encephalopathy/therapy*
;
Biomarkers
;
Sepsis/complications*
;
Magnetic Resonance Imaging
;
Electroencephalography
;
Brain Diseases/etiology*
9.Investigation on the basic situation of pre-analytical quality management in blood station laboratories in North China
Jing SUN ; Hongwei GE ; Zhengmin LIU ; Qianqian QIN ; Wei HAN ; Tong PAN ; Dongli JIAO ; Xiaolan DONG ; Rui WANG
Chinese Journal of Blood Transfusion 2025;38(11):1514-1520
Objective: To investigate the basic situation of pre-analytical quality management in blood station laboratories in North China, and to provide baseline data for promoting the homogenization and standardization of these pre-analytical processes in each blood station laboratory. Methods: A cross-sectional status survey was designed based on the quality management regulations of blood stations, ISO15189 standards and relevant quality management requirements. This survey covering various aspects including laboratory general situation, sample collection and temporary storage, transportation, reception, and quality continuous improvement situations. Data analysis was performed on the survey results of each laboratory. Results: All the 38 blood station laboratories in North China had established a pre-analytical quality management system framework and implemented basic pre-analytical quality control activities; however, there were differences in implementation. 1) Among the 12 basic quality items, 3 items were monitored by all the investigated laboratories (100%), 6 items were monitored by the vast majority of laboratories (about 90%), and 3 items were monitored by a portion of laboratories (about 60%). There were no significant differences in the monitoring index among the three regions and among different types of laboratories (P>0.05). 2) Among the total of 26 items in the three key processes before testing (sample collection and storage, transportation, reception and processing), 12 items were monitored by all laboratories (100%), 11 items were monitored by the vast majority of laboratories (about 90%), and 3 items were monitored by a portion of laboratories (about 75%). There were no significant differences in monitoring index among different regions and types of laboratories (P>0.05). Conclusion: This survey provides a reference and basis for the gap analysis of the pre-analytical process quality management in 38 blood station laboratories across North China. It facilitates laboratories in identifying pre-analytical quality problems, resolving problems, preventing errors, and ensuring that the quality of blood samples before testing meets the established requirements. It lays a foundation for the homogenization of pre-analytical quality management in regional blood stations.
10.Investigation on the management of hemolytic and lipemic samples in the preanalytical phase in blood station laboratories in North China
Jing SUN ; Hongwei GE ; Zhengmin LIU ; Qianqian QIN ; Wei HAN ; Tong PAN ; Dongli JIAO ; Xiaolan DONG ; Rui WANG
Chinese Journal of Blood Transfusion 2025;38(11):1529-1534
Objective: To investigate the assessment criteria and subsequent handling practices of hemolytic and lipemic blood samples before testing in blood screening laboratories in North China, and to provide data to support the standardization of their management in blood station laboratories. Methods: Data on the preanalytical management of hemolytic and lipemic samples from 38 laboratories were collected. The details of management on the criteria and verificatioon for assessment, the assessment methods, and subsequent handling procedures of hemolytic and lipemic samples in blood station laboratories were analyzed. Results: 1) All 38 blood station laboratories monitored serological and nucleic acid samples for hemolysis and lipemia in pre-analytical phase. 2) The criteria and methods for assessing hemolytic and lipemic samples varied among the laboratories of the 38 blood stations. 15 laboratories (39.47%) followed manufacturer's instructions, 9 laboratories (23.68%) formulated their own criteria, and 14 laboratories (36.84%) referred to the criteria of other laboratories. 16 laboratories (42.11%) verified the criteria for assessing hemolytic and lipemic samples, with significant variations in verification rate across laboratories from different regions (P<0.05). For the assessment methods, visual inspection was used by 28 laboratories (73.68%) for hemolytic samples and by 27 laboratories (71.05%) for lipemic samples; the colorimetric card method was used by 10 laboratories (26.32%) for assessing both hemolytic and lipemic samples; the instrumental method was used by 1 laboratory (2.63%) for assessing lipemic samples.3) The handling procedures for hemolytic and lipemic samples varied significantly and followed a gradient distribution pattern among 38 laboratories (including accepting samples for testing, accepting samples for concession testing, re-collecting samples, and rejecting samples and halting testing). With increasing severity of hemolysis and lipemia, more laboratories halted testing, and relatively fewer laboratories accepted samples for normal testing. 5 laboratories (13.16%) applied different handling procedures on serological and nucleic acid samples. Conclusion: This survey provides a reference and basis for analyzing gaps in the management of hemolytic and lipemic samples during the preanalyical phase in blood station laboratories in North China. It enables laboratories to identify the problems and deficiencies in the management of hemolytic and lipemic samples, to ensure preanalytical samples quality meets the established requirements, and to lay a foundation for promoting the homogenization and standardization of the regional sample quality management mode.

Result Analysis
Print
Save
E-mail