1.Internal relationship between Hippo pathway and pulmonary hypertension
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2021;28(11):1376-1380
Pulmonary hypertension is a kind of progressive pulmonary vascular diseases in which there is excessive vasoconstriction and abnormal pulmonary vascular remodeling, and then a gradual increase in pulmonary arterial pressure, and it eventually leads to right ventricular failure and even death. The pathogenesis of pulmonary hypertension is still uncertain, but some studies suggest that Hippo pathway or some components of the Hippo pathway may be involved in the progress of pulmonary hypertension. In this review, we describe the mechanism of the Hippo pathway or some components of the Hippo pathway in the progress of pulmonary hypertension.
Pulmonary hypertension
;
Hippo pathway
;
pulmonary vascular remodeling
;
review
2.Hippo-YAP signaling pathway regulates autophagy of human periodontal ligament cells under cyclic tensile stress.
Xiaofang WAN ; Haiyan HE ; Lü JIALING ; Yujie WU ; Guannan ZHONG ; Xiaomei XU
West China Journal of Stomatology 2023;41(3):260-268
OBJECTIVES:
This work aimed to investigate the molecular mechanism of cyclic tensile stress (CTS) stimulating autophagy in human periodontal ligament cells (hPDLCs).
METHODS:
hPDLCs were isolated and cultured from normal periodontal tissues. hPDLCs were loaded with tensile stress by force four-point bending extender to simulate the autophagy of hPDLCs induced by orthodontic force du-ring orthodontic tooth movement. XMU-MP-1 was used to inhibit the Hippo signaling pathway to explore the role of the Hippo-YAP signaling pathway in activating hPDLC autophagy by tensile stress. The expression levels of autophagy-related genes (Beclin-1, LC3, and p62) in hPDLCs were detected by real-time quantitative polymerase chain reaction. Western blot was used to detect the expression levels of autophagy-related proteins (Beclin-1, LC3-Ⅱ/LC3-Ⅰ, and p62) and Hippo-YAP pathway proteins (active-YAP and p-YAP) in hPDLCs. Immunofluorescence was used to locate autophagy-related proteins (LC3-Ⅱand p62) and Hippo-YAP pathway proteins (active-YAP) of hPDLCs.
RESULTS:
CTS-activated autophagy in hPDLCs and expression of autophagy-related proteins initially increased and then decreased; it began to increase at 30 min, peaked at 3 h, and decreased (P<0.05). CTS increased the expression of active-YAP protein and decreased the expression of p-YAP protein (P<0.05). When XMU-MP-1 inhibited the Hippo-YAP signaling pathway (P<0.05), active-YAP protein was promoted to enter the nucleus and autophagy expression was enhanced (P<0.05).
CONCLUSIONS
The Hippo-YAP signaling pathway is involved in the regulation of autophagy activation in hPDLCs under CTS.
Humans
;
Hippo Signaling Pathway
;
Periodontal Ligament/metabolism*
;
Beclin-1/metabolism*
;
Cells, Cultured
;
Autophagy
3.Effects of Hippo signaling pathway on lung injury repair by mesenchymal stem cells in acute respiratory distress syndrome.
Lang LI ; Liang DONG ; Fei GAO ; Jiaojie HUI ; Yizhe CHEN ; Jie YAN
Chinese Critical Care Medicine 2019;31(3):281-287
OBJECTIVE:
To investigate the effects of Hippo signaling pathway on lung injury repair of mesenchymal stem cells (MSC) in acute respiratory distress syndrome (ARDS) and its mechanism.
METHODS:
Mouse bone marrow-derived MSC (mMSCs) cell lines with low expression of large tumor suppressor 2 (LATS2) were constructed by lentiviral vector transfection. Male C57BL/6 mice aging 6-8 weeks old were divided into four groups according to random number table (n = 36). The ARDS animal model (ARDS group) was reproduced by intratracheally injection of 2 g/L lipopolysaccharide (LPS) 50 μL, the normal saline (NS) control group was injected with an equal volume of NS. After 4 hours of model reproduction, 5×104 mMSCs transfected with blank lentivirus vector (MSC-shcontrol group) or shLATS2 lentivirus vector (MSC-shLATS2 group) were transplanted intratracheally, while NS control group and ARDS group were injected with equal volume of phosphate buffered saline (PBS). Mice were sacrificed at 3, 7, and 14 days after modeling, and lung tissue and bronchoalveolar lavage fluid (BALF) were harvested. Near-infrared fluorescence imaging, immunofluorescence staining and Western Blot were used to track mMSCs in lung tissue. Retension and proportion of mMSC differentiation into type II alveolar epithelial cells (AEC II) were evaluated. Lung tissue wet weight/body weight ratio (LWW/BW) and total protein (TP) and albumin (ALB) in BALF were determined to reflect pulmonary edema. The expression of Occludin protein in lung epithelium was tested by Western Blot to reflect permeability of epithelium. The levels of interleukins (IL-1β, IL-6, IL-10) in BALF were assessed by enzyme-linked immunosorbent assay (ELISA) to reflect lung inflammation. Hematoxylin-eosin (HE) staining and modified Masson staining were carried out, and the scores were assessed to reflect lung injury and evaluate pulmonary fibrosis.
RESULTS:
The signal intensity of isolated lung fluorescence images at 3 days in the MSC-shLATS2 group was significantly higher than that in the MSC-shcontrol group (fluorescence intensity: 0.039±0.005 vs. 0.017±0.002, P < 0.05), the number of green fluorescent protein (GFP)-positive cells in lung tissue was also significantly higher than that in the MSC-shcontrol group (cells/HP: 29.65±6.98 vs. 17.50±4.58, P < 0.05), but they all decreased with time; and the proportion of mMSCs differentiated into AEC II was significantly increased [(64.12±15.29)% vs. (19.64±3.71)%, P < 0.05]. Compared with the NS control group, the levels of surface active protein C (SPC) and Occludin protein in the ARDS group were significantly decreased, LWW/BW ratio and TP, ALB and inflammatory factors levels in BALF were significantly increased; extensive alveolar and interstitial edema, hemorrhage and diffuse inflammatory cell infiltration were found in lung tissue, and the lung injury score was significantly increased; collagen fibers were deposited in alveolar septum and alveolar cavity, and pulmonary fibrosis score was also increased significantly. Compared with the ARDS group, the expression levels of SPC and Occludin at 14 days in the MSC-shcontrol group and the MSC-shLATS2 group were significantly increased (SPC/β-actin: 0.51±0.12, 0.68±0.10 vs. 0.27±0.08, Occludin/β-actin: 0.49±0.19, 0.79±0.11 vs. 0.25±0.08, all P < 0.05), TP, ALB, IL-1β, IL-6 levels in BALF at 3 days were significantly decreased [TP (g/L): 8.08±1.72, 5.12±0.87 vs. 12.55±2.09; ALB (g/L): 0.71±0.21, 0.44±0.18 vs. 1.18±0.29, IL-1β (ng/L): 99.26±14.32, 60.11±8.58 vs. 161.86±25.17, IL-6 (ng/L): 145.54±13.29, 101.74±11.55 vs. 258.79±27.88, all P < 0.05], and IL-10 was significantly increased (ng/L: 190.83±22.61, 316.65±37.88, both P < 0.05). Furthermore, all the above parameters in the MSC-shLATS2 group were significantly improved as compared with those in the MSC-shcontrol group (all P < 0.05). LWW/BW ratio in the MSC-shLATS2 group was significantly lower than that in the ARDS group and the MSC-shcontrol group (mg/g: 9.85±1.51 vs. 16.78±1.92, 14.88±1.74, both P < 0.05).
CONCLUSIONS
Inhibiting Hippo signaling pathway by low expression of LATS2 could promote the retention of mMSCs in lung tissue and differentiation into AEC II cells of ARDS mice, improve pulmonary edema and alveolar epithelial permeability, regulate pulmonary inflammatory response, and alleviate pathological damage and fibrosis of lung tissue.
Animals
;
Hippo Signaling Pathway
;
Lung Injury/prevention & control*
;
Male
;
Mesenchymal Stem Cells/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Protein Serine-Threonine Kinases/metabolism*
;
Respiratory Distress Syndrome/metabolism*
;
Signal Transduction
4.Reverse effect of Semaphorin-3F on rituximab resistance in diffuse large B-cell lymphoma via the Hippo pathway.
Qiong LI ; Naya MA ; Xinlei LI ; Chao YANG ; Wei ZHANG ; Jingkang XIONG ; Lidan ZHU ; Jiali LI ; Qin WEN ; Lei GAO ; Cheng YANG ; Lingyi RAO ; Li GAO ; Xi ZHANG ; Jun RAO
Chinese Medical Journal 2023;136(12):1448-1458
BACKGROUND:
Exploring the underlying mechanism of rituximab resistance is critical to improve the outcomes of patients with diffuse large B-cell lymphoma (DLBCL). Here, we tried to identify the effects of the axon guidance factor semaphorin-3F (SEMA3F) on rituximab resistance as well as its therapeutic value in DLBCL.
METHODS:
The effects of SEMA3F on the treatment response to rituximab were investigated by gain- or loss-of-function experiments. The role of the Hippo pathway in SEMA3F-mediated activity was explored. A xenograft mouse model generated by SEMA3F knockdown in cells was used to evaluate rituximab sensitivity and combined therapeutic effects. The prognostic value of SEMA3F and TAZ (WW domain-containing transcription regulator protein 1) was examined in the Gene Expression Omnibus (GEO) database and human DLBCL specimens.
RESULTS:
We found that loss of SEMA3F was related to a poor prognosis in patients who received rituximab-based immunochemotherapy instead of chemotherapy regimen. Knockdown of SEMA3F significantly repressed the expression of CD20 and reduced the proapoptotic activity and complement-dependent cytotoxicity (CDC) activity induced by rituximab. We further demonstrated that the Hippo pathway was involved in the SEMA3F-mediated regulation of CD20. Knockdown of SEMA3F expression induced the nuclear accumulation of TAZ and inhibited CD20 transcriptional levels via direct binding of the transcription factor TEAD2 and the CD20 promoter. Moreover, in patients with DLBCL, SEMA3F expression was negatively correlated with TAZ, and patients with SEMA3F low TAZ high had a limited benefit from a rituximab-based strategy. Specifically, treatment of DLBCL cells with rituximab and a YAP/TAZ inhibitor showed promising therapeutic effects in vitro and in vivo .
CONCLUSION
Our study thus defined a previously unknown mechanism of SEMA3F-mediated rituximab resistance through TAZ activation in DLBCL and identified potential therapeutic targets in patients.
Humans
;
Animals
;
Mice
;
Rituximab/therapeutic use*
;
Hippo Signaling Pathway
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Prognosis
;
Semaphorins/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Membrane Proteins/genetics*
;
Nerve Tissue Proteins/genetics*
5.Doublecortin-like kinase 1 activates Hippo pathway to promote migration, invasion and proliferation of pancreatic cancer cells.
Rui YAN ; Zi Wei LIANG ; He Shu LIU ; Yang GE ; Guang Yu AN
Chinese Journal of Oncology 2023;45(7):594-604
Objective: To explore the mechanism of Doublecortin-like kinase 1 (DCLK1) in promoting cell migration, invasion and proliferation in pancreatic cancer. Methods: The correlation between DCLK1 and Hippo pathway was analyzed using TCGA and GTEx databases and confirmed by fluorescence staining of pancreatic cancer tissue microarrays. At the cellular level, immunofluorescence staining of cell crawls and western blot assays were performed to clarify whether DCLK1 regulates yes associated protein1 (YAP1), a downstream effector of the Hippo pathway. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to analyze the expressions of YAP1 binding transcription factor TEA-DNA binding proteins (TEAD) and downstream malignant behavior-promoting molecules CYR61, EDN1, AREG, and CTGF. Transwell test of the DCLK1-overexpressing cells treated with the Hippo pathway inhibitor Verteporfin was used to examine whether the malignant behavior-promoting ability was blocked. Analysis of changes in the proliferation index of experimental cells used real-time label-free cells. Results: TCGA combined with GTEx data analysis showed that the expressions of DCLK1 and YAP1 molecules in pancreatic cancer tissues were significantly higher than those in adjacent tissues (P<0.05). Moreover, DCLK1was positively correlated with the expressions of many effectors in the Hippo pathway, including LATS1 (r=0.53, P<0.001), LATS2 (r=0.34, P<0.001), MOB1B (r=0.40, P<0.001). In addition, the tissue microarray of pancreatic cancer patients was stained with multicolor fluorescence, indicated that the high expression of DCLK1 in pancreatic cancer patients was accompanied by the up-regulated expression of YAP1. The expression of DCLK1 in pancreatic cancer cell lines was analyzed by the CCLE database. The results showed that the expression of DCLK1 in AsPC-1 and PANC-1 cells was low. Thus, we overexpressed DCLK1 in AsPC-1 and PANC-1 cell lines and found that DCLK1 overexpression in pancreatic cancer cell lines promoted YAP1 expression and accessible to the nucleus. In addition, DCLK1 up-regulated the expression of YAP1 binding transcription factor TEAD and increased the mRNA expression levels of downstream malignant behavior-promoting molecules. Finally, Verteporfin, an inhibitor of the Hippo pathway, could antagonize the cell's malignant behavior-promoting ability mediated by high expression of DCLK1. We found that the number of migrated cells with DCLK1 overexpressing AsPC-1 group was 68.33±7.09, which was significantly higher than 22.00±4.58 of DCLK1 overexpressing cells treated with Verteporfin (P<0.05). Similarly, the migration number of PANC-1 cells overexpressing DCLK1 was 65.66±8.73, which was significantly higher than 37.00±6.00 of the control group and 32.33±9.61 of Hippo pathway inhibitor-treated group (P<0.05). Meanwhile, the number of invasive cells in the DCLK1-overexpressed group was significantly higher than that in the DCLK1 wild-type group cells, while the Verteporfin-treated DCLK1-overexpressed cells showed a significant decrease. In addition, we monitored the cell proliferation index using the real-time cellular analysis (RTCA) assay, and the proliferation index of DCLK1-overexpressed AsPC-1 cells was 0.66±0.04, which was significantly higher than 0.38±0.01 of DCLK1 wild-type AsPC-1 cells (P<0.05) as well as 0.05±0.03 of DCLK1-overexpressed AsPC1 cells treated with Verteporfin (P<0.05). PANC-1 cells showed the same pattern, with a proliferation index of 0.77±0.04 for DCLK1-overexpressed PANC-1 cells, significantly higher than DCLK1-overexpressed PANC1 cells after Verteporfin treatment (0.14±0.05, P<0.05). Conclusion: The expression of DCLK1 is remarkably associated with the Hippo pathway, it promotes the migration, invasion, and proliferation of pancreatic cancer cells by activating the Hippo pathway.
Humans
;
Doublecortin-Like Kinases
;
Hippo Signaling Pathway
;
Verteporfin/pharmacology*
;
Cell Line, Tumor
;
Protein Serine-Threonine Kinases/metabolism*
;
Pancreatic Neoplasms/pathology*
;
YAP-Signaling Proteins
;
Transcription Factors/metabolism*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Tumor Suppressor Proteins/genetics*
6.Radix Scrophulariae Extracts Exert Effect on Hyperthyroidism via MST1/Hippo Signaling Pathway.
Ning ZHANG ; Tao YE ; Xu LU ; Zi-Hui LI ; Ling LI
Chinese journal of integrative medicine 2023;29(11):998-1006
OBJECTIVE:
To explore the mechanism of Radix Scrophulariae (RS) extracts in the treatment of hyperthyroidism rats by regulating proliferation, apoptosis, and autophagy of thyroid cell through the mammalian sterile 20-like kinase 1 (MST1)/Hippo pathway.
METHODS:
Twenty-four rats were randomly divided into 4 groups according to a random number table: control, model group, RS, and RS+Hippo inhibitor (XMU-MP-1) groups (n=6 per group). Rats were gavaged with levothyroxine sodium tablet suspension (LST, 8 μ g/kg) for 21 days except for the control group. Afterwards, rats in the RS group were gavaged with RS extracts at the dose of 1,350 mg/kg, and rats in the RS+XMU-MP-1 group were gavaged with 1,350 mg/kg RS extracts and 1 mg/kg XMU-MP-1. After 15 days of administration, thyroid gland was taken for gross observation, and histopathological changes were observed by hematoxylin-eosin staining. The structure of Golgi secretory vesicles in thyroid tissues was observed by transmission electron microscopy. The expression of thyrotropin receptor (TSH-R) was observed by immunohistochemistry. Terminal-deoxynucleoitidyl transferase mediated nick end labeling assay was used to detect cell apoptosis in thyroid tissues. Real-time quantity primer chain reaction and Western blot were used to detect the expressions of MST1, p-large tumor suppressor gene 1 (LATS1), p-Yes1 associated transcriptional regulator (YAP), proliferating cell nuclear antigen (PCNA), G1/S-specific cyclin-D1 (Cyclin D1), B-cell lymphoma-2 (Bcl-2), Caspase-3, microtubule-associated proeins light chain 3 II/I (LC3-II/I), and recombinant human autophagy related 5 (ATG5). Thyroxine (T4) level was detected by enzyme-linked immunosorbent assay.
RESULTS:
The thyroid volume of rats in the model group was significantly increased compared to the normal control group (P<0.01), and pathological changes such as uneven size of follicular epithelial cells, disorderly arrangement, and irregular morphology occurred. The secretion of small vesicles by Golgi apparatus was reduced, and the expressions of receptor protein TSH-R and T4 were significantly increased (P<0.01), while the expressions of MST1, p-LATS1, p-YAP, Caspase-3, LC3-II/I, and ATG5 were significantly decreased (P<0.01). The expressions of Bcl-2, PCNA, and cyclin D1 were significantly increased (P<0.01). Compared with the model group, RS extracts reduced the volume of thyroid gland, improved pathological condition of the thyroid gland, promoted secretion of the secretory vesicles with double-layer membrane structure in thyroid Golgi, significantly inhibited the expression of TSH-R and T4 levels (P<0.01), upregulated MST1, p-LATS1, p-YAP, Caspase-3, LC3-II/I, and ATG5 expressions (P<0.01), and downregulated Bcl-2, PCNA, and Cyclin D1 expressions (P<0.01). XMU-MP-1 inhibited the intervention effects of RS extracts (P<0.01).
CONCLUSION
RS extracts could inhibit proliferation and promote apoptosis and autophagy in thyroid tissues through MST1/Hippo pathway for treating hyperthyroidism.
Rats
;
Humans
;
Animals
;
Hippo Signaling Pathway
;
Proliferating Cell Nuclear Antigen/metabolism*
;
Cyclin D1/pharmacology*
;
Caspase 3/metabolism*
;
Protein Serine-Threonine Kinases/pharmacology*
;
Apoptosis
;
Hyperthyroidism/drug therapy*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Thyrotropin/pharmacology*
;
Mammals/metabolism*
7.Kindlin-2 regulates endometrium development via mTOR and Hippo signaling pathways in mice.
Jing ZHANG ; Jia Gui SONG ; Zhen Bin WANG ; Yu Qing GONG ; Tian Zhuo WANG ; Jin Yu ZHOU ; Jun ZHAN ; Hong Quan ZHANG
Journal of Peking University(Health Sciences) 2022;54(5):846-852
OBJECTIVE:
To investigate the effects and mechanisms of Kindlin-2 on uterus development and reproductive capacity in female mice.
METHODS:
Cdh16-Cre tool mice and Kindlin-2flox/flox mice were used to construct the mouse model of uterus specific knockout of Kindlin-2, and the effects of Kindlin-2 deletion on uterine development and reproduction capacity of female mice were observed. High expression and knockdown of Kindlin-2 in endometrial cancer cell lines HEC-1 and Ish were used to detect the regulation of mammalian target of rapamycin (mTOR) signaling pathway. In addition, uterine proteins of the female mice with specific knockout of Kindlin-2 and female mice in the control group were extracted to detect the protein levels of key molecules of mTOR signaling pathway and Hippo signaling pathway.
RESULTS:
The mouse model of uterine specific knockout of Kindlin-2 was successfully constructed. The knockout efficiency of Kindlin-2 in mouse uterus was identified and verified by mouse tail polymerase chain reaction (PCR), Western blot protein identification, immunohistochemical staining (IHC) and other methods. Compared with the control group, the female mice with uterus specific deletion of Kindlin-2 lost weight, seriously impaired reproductive ability, and the number of newborn mice decreased, but the proportion of the female mice and male mice in the newborn mice did not change. Hematoxylin eosin staining (HE) experiment showed that the endometrium of Kindlin-2 knockout group was incomplete and the thickness of uterine wall became thinner. In terms of mechanism, the deletion of Kindlin-2 in endo-metrial cancer cell lines HEC-1 and Ish could downregulate the protein levels of mTOR, phosphorylated mTOR, adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK and phosphorylated ribosomal protein S6 (S6), and the mTOR signal pathway was inhibited. It was found that the specific deletion of Kindlin-2 could upregulate the protein levels of Mps one binding 1 (MOB1) and phosphorylated Yes-associated protein (YAP) in the uterus of the female mice, and the Hippo signal pathway was activated.
CONCLUSION
Kindlin-2 inhibits the development of uterus by inhibiting mTOR signal pathway and activating Hippo signal pathway, thereby inhibiting the fertility of female mice.
AMP-Activated Protein Kinases/metabolism*
;
Adenosine Monophosphate/metabolism*
;
Animals
;
Cadherins/metabolism*
;
Cytoskeletal Proteins/metabolism*
;
Endometrium/metabolism*
;
Eosine Yellowish-(YS)/metabolism*
;
Female
;
Hematoxylin/metabolism*
;
Hippo Signaling Pathway
;
Male
;
Mammals/metabolism*
;
Mice
;
Muscle Proteins
;
Ribosomal Protein S6/metabolism*
;
Sirolimus/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
YAP-Signaling Proteins
8.Role of cytoplasmic lncRNAs in regulating cancer signaling pathways.
Pei-Fen FU ; Xin ZHENG ; Xiao FAN ; Ai-Fu LIN
Journal of Zhejiang University. Science. B 2019;20(1):1-8
Cancer remains a serious healthcare problem despite significant improvements in early detection and treatment approaches in the past few decades. Novel biomarkers for diagnosis and therapeutic strategies are urgently needed. In recent years, long noncoding RNAs (lncRNAs) have been reported to be aberrantly expressed in tumors and show crosstalk with key cancer-related signaling pathways. In this review, we summarized the current progress of research on cytoplasmic lncRNAs and their roles in regulating cancer signaling and tumor progression, further characterization of which may lead to effective approaches for cancer prevention and therapy.
Animals
;
Biomarkers, Tumor/metabolism*
;
Cytoplasm/metabolism*
;
Hippo Signaling Pathway
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Neoplasms/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Signal Transduction/genetics*