2.Prognostic value of quantitative flow ratio measured immediately after percutaneous coronary intervention for chronic total occlusion.
Zheng QIAO ; Zhang-Yu LIN ; Qian-Qian LIU ; Rui ZHANG ; Chang-Dong GUAN ; Sheng YUAN ; Tong-Qiang ZOU ; Xiao-Hui BIAN ; Li-Hua XIE ; Cheng-Gang ZHU ; Hao-Yu WANG ; Guo-Feng GAO ; Ke-Fei DOU
Journal of Geriatric Cardiology 2025;22(4):433-442
BACKGROUND:
The clinical impact of post-percutaneous coronary intervention (PCI) quantitative flow ratio (QFR) in patients treated with PCI for chronic total occlusion (CTO) was still undetermined.
METHODS:
All CTO vessels treated with successful anatomical PCI in patients from PANDA III trial were retrospectively measured for post-PCI QFR. The primary outcome was 2-year vessel-oriented composite endpoints (VOCEs, composite of target vessel-related cardiac death, target vessel-related myocardial infarction, and ischemia-driven target vessel revascularization). Receiver operator characteristic curve analysis was conducted to identify optimal cutoff value of post-PCI QFR for predicting the 2-year VOCEs, and all vessels were stratified by this optimal cutoff value. Cox proportional hazards models were employed to calculate the hazard ratio (HR) with 95% CI.
RESULTS:
Among 428 CTO vessels treated with PCI, 353 vessels (82.5%) were analyzable for post-PCI QFR. 31 VOCEs (8.7%) occurred at 2 years. Mean value of post-PCI QFR was 0.92 ± 0.13. Receiver operator characteristic curve analysis shown the optimal cutoff value of post-PCI QFR for predicting 2-year VOCEs was 0.91. The incidence of 2-year VOCEs in the vessel with post-PCI QFR < 0.91 (n = 91) was significantly higher compared with the vessels with post-PCI QFR ≥ 0.91 (n = 262) (22.0% vs. 4.2%, HR = 4.98, 95% CI: 2.32-10.70).
CONCLUSIONS
Higher post-PCI QFR values were associated with improved prognosis in the PCI practice for coronary CTO. Achieving functionally optimal PCI results (post-PCI QFR value ≥ 0.91) tends to get better prognosis for patients with CTO lesions.
3.Cocrystal pleomorphism-inspired drug nanoassembly for pulmonary-endothelium targeting and pulmonary hypertension treatment.
Makhloufi ZOULIKHA ; Jiahui ZOU ; Pei YANG ; Jun WU ; Wei WU ; Kun HAO ; Wei HE
Acta Pharmaceutica Sinica B 2025;15(1):557-570
Endothelial dysfunction is one of the early triggers of vascular remodeling during pulmonary hypertension (PH) with complex predisposing mechanisms, mainly via an unbalanced generation of vasoactive factors, increased expression of growth factors, prothrombotic elements, and inflammatory markers. Conventional treatment regimens are restricted to a single therapeutic pathway, which usually leads to limited clinical outcomes. Combination therapies targeting multiple cells and several signaling pathways are increasingly adopted in PH treatment. Herein, inspired by the cocrystal pleomorphism theory, we prepared rod-shaped nanococrystals of the endothelin-1 (ET-1) receptor antagonist (bosentan, BST) and the anti-inflammatory drug (andrographolide, AG) for targeting the pulmonary endothelium and alleviating PH. The 525 nm-sized co-delivery system displayed a rod-like morphology, preferentially accumulated in the pulmonary endothelium and alleviated pulmonary artery (PA) remodeling. A three-week treatment with the preparation significantly alleviated the monocrotaline (MCT)- or Sugen 5416/hypoxia (SuHx)-induced PH by reducing the pulmonary artery pressure, increasing the survival rate, improving the hemodynamics, and inhibiting vascular remodeling. Mechanistically, the nanococrystals collaboratively repaired endothelial dysfunction by suppressing the pathways of ET-1/NF-κB/ICAM-1/TNF-α/IL-6. In conclusion, the cocrystal-based strategy offers a promising approach for constructing co-delivery systems. The developed rod-shaped nanococrystals effectively target the pulmonary endothelium and relieve experimental PH.
4.Identification and functional characterization of a new flavonoid glycosyltransferase from Rheum palmatum.
Shiwen ZHANG ; Jianzhen ZOU ; Zitong HAO ; Mengqi GAO ; Gang ZHANG ; Mengmeng LIU
Chinese Herbal Medicines 2025;17(2):307-314
OBJECTIVE:
To characterize a glycosyltransferase (RpUGT1) from Rheum palmatum and investigate its specificity toward flavonoid compounds.
METHODS:
The RpUGT1 was expressed in Escherichia coli and screened for catalytic activity against a range of flavonoid substrates using a high-throughput HPLC assay method. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) were used to determine the structure of the product. Homology modeling, molecular docking analyses and site-directed mutagenesis studies were conducted to identify key residues responsible for its function.
RESULTS:
The recombinant RpUGT1 protein exhibited catalytic activity towards various flavonoids. Notably, RpUGT1 catalyzed the glycosylation of isorhamnetin to form 3-O-glucoside and kaempferol to form 7-O-glucoside, utilizing uridine diphosphate (UDP) glucose as the sugar donor. The homology modeling and molecular docking analyses identified key residues responsible for its activity. Subsequent site-directed mutagenesis studies highlighted the crucial role of K307 in catalysis.
CONCLUSION
These discoveries offer valuable perspectives on the role of the UGT family and establish a groundwork for forthcoming research on the synthesis of flavonoids in plants.
5.Occupational Hazard Factors and the Trajectory of Fasting Blood Glucose Changes in Chinese Male Steelworkers Based on Environmental Risk Scores: A Prospective Cohort Study.
Ming Xia ZOU ; Wei DU ; Qin KANG ; Yu Hao XIA ; Nuo Yun ZHANG ; Liu FENG ; Fei Yue LI ; Tian Cheng MA ; Ya Jing BAO ; Hong Min FAN
Biomedical and Environmental Sciences 2025;38(6):666-677
OBJECTIVE:
We aimed to investigate the patterns of fasting blood glucose (FBG) trajectories and analyze the relationship between various occupational hazard factors and FBG trajectories in male steelworkers.
METHODS:
The study cohort included 3,728 workers who met the selection criteria for the Tanggang Occupational Cohort (TGOC) between 2017 and 2022. A group-based trajectory model was used to identify the FBG trajectories. Environmental risk scores (ERS) were constructed using regression coefficients from the occupational hazard model as weights. Univariate and multivariate logistic regression analyses were performed to explore the effects of occupational hazard factors using the ERS on FBG trajectories.
RESULTS:
FBG trajectories were categorized into three groups. An association was observed between high temperature, noise exposure, and FBG trajectory ( P < 0.05). Using the first quartile group of ERS1 as a reference, the fourth quartile group of ERS1 had an increased risk of medium and high FBG by 1.90 and 2.21 times, respectively (odds ratio [ OR] = 1.90, 95% confidence interval [ CI]: 1.17-3.10; OR = 2.21, 95% CI: 1.09-4.45).
CONCLUSION
An association was observed between occupational hazards based on ERS and FBG trajectories. The risk of FBG trajectory levels increase with an increase in ERS.
Humans
;
Male
;
Adult
;
Blood Glucose/analysis*
;
China
;
Prospective Studies
;
Occupational Exposure/adverse effects*
;
Risk Factors
;
Middle Aged
;
Steel
;
Fasting/blood*
;
Metal Workers
;
East Asian People
6.Differentiation and Treatment of Bipolar Disorder from the Relationship Between "Liver is Yin in Form and Yang in Function" and Bile Acid Metabolism
Xiaojie ZOU ; Xiaoyu SHI ; Yingli LI ; Junhong DENG ; Hefei QIN ; Shangyan HAO ; Quangen CHU
Journal of Traditional Chinese Medicine 2025;66(23):2433-2437
This study investigates the clinical differentiation and treatment strategies for bipolar disorder (BD) by analyzing the relationship of its core pathomechanisms including qi stagnation, blood stasis, phlegm turbidity, and heat constraint with bile acid metabolism. The imbalance of "yin in form and yang in function" leads to qi stagnation, blood stasis, phlegm turbidity, and heat constraint, which are critical in the pathogenesis and progression of BD. Bile acids regulate neuroinflammation, neural plasticity, and intestinal flora homeostasis through receptor-mediated pathways. It is believed that the physiological functions of bile acids concretely embody the concept of the "liver is yin in form and yang in function" theory. Clinically, prescriptions such as Sini Powder (四逆散) with the function of venting pathogen and resolving constraint, Wendan Decoction (温胆汤) of drying dampness and resolving phlegm, Longdan Xiegan Decoction (龙胆泻肝汤) of clearing liver and draining fire, and Huanglian Ejiao Decoction (黄连阿胶汤) of nourishing yin and blood can be used to nourish liver yin and restore liver yang function. These strategies may improve BD prognosis by modulating bile acid synthesis and metabolism.
7.Discovery of proqodine A derivatives with antitumor activity targeting NAD(P)H: quinone oxidoreductase 1 and nicotinamide phosphoribosyltransferase.
Jiangzhou SONG ; Guiqing ZOU ; Zhou ZHAO ; Ya ZHU ; Jiayu XUE ; Lanjia AO ; Huiyong SUN ; Haiping HAO ; Bo ZHANG ; Xiaowei XU
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):75-88
NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.
Humans
;
NAD/metabolism*
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Nicotinamide Phosphoribosyltransferase/metabolism*
;
Cytokines/metabolism*
;
Quinones
;
Oxidoreductases
8.Not Available.
Weile YE ; Jiaojiao WANG ; Peter J LITTLE ; Jiami ZOU ; Zhihua ZHENG ; Jing LU ; Yanjun YIN ; Hao LIU ; Dongmei ZHANG ; Peiqing LIU ; Suowen XU ; Wencai YE ; Zhiping LIU
Acta Pharmaceutica Sinica B 2024;14(1):1-19
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases (CVDs), the world's primary cause of death. Ginkgo biloba, a well-known traditional Chinese medicine with notable cardiovascular actions, has been used as a cardio- and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries. Preclinical studies have shown that ginkgolide B, a bioactive component in Ginkgo biloba, can ameliorate atherosclerosis in cultured vascular cells and disease models. Of clinical relevance, several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases, such as ischemia stroke. Here, we present a comprehensive review of the pharmacological activities, pharmacokinetic characteristics, and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy. We highlight new molecular targets of ginkgolide B, including nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidase), lectin-like oxidized LDL receptor-1 (LOX-1), sirtuin 1 (SIRT1), platelet-activating factor (PAF), proprotein convertase subtilisin/kexin type 9 (PCSK9) and others. Finally, we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
9. MW-9, a chalcones derivative bearing heterocyclic moieties, ameliorates ulcerative colitis via regulating MAPK signaling pathway
Zhao WU ; Nan-Ting ZOU ; Chun-Fei ZHANG ; Hao-Hong ZHANG ; Qing-Yan MO ; Ze-Wei MAO ; Chun-Ping WAN ; Ming-Qian JU ; Chun-Ping WAN ; Xing-Cai XU
Chinese Pharmacological Bulletin 2024;40(3):514-520
Aim To investigate the therapeutic effect of the MW-9 on ulcerative colitis(UC)and reveal the underlying mechanism, so as to provide a scientific guidance for the MW-9 treatment of UC. Methods The model of lipopolysaccharide(LPS)-stimulated RAW264.7 macrophage cells was established. The effect of MW-9 on RAW264.7 cells viability was detected by MTT assay. The levels of nitric oxide(NO)in RAW264.7 macrophages were measured by Griess assay. Cell supernatants and serum levels of inflammatory cytokines containing IL-6, TNF-α and IL-1β were determined by ELISA kits. Dextran sulfate sodium(DSS)-induced UC model in mice was established and body weight of mice in each group was measured. The histopathological damage degree of colonic tissue was assessed by HE staining. The protein expression of p-p38, p-ERK1/2 and p-JNK was detected by Western blot. Results MW-9 intervention significantly inhibited NO release in RAW264.7 macrophages with IC50 of 20.47 mg·L-1 and decreased the overproduction of inflammatory factors IL-6, IL-1β and TNF-α(P<0.05). MW-9 had no cytotoxicity at the concentrations below 6 mg·L-1. After MW-9 treatment, mouse body weight was gradually reduced, and the serum IL-6, IL-1β and TNF-α levels were significantly down-regulated. Compared with the model group, MW-9 significantly decreased the expression of p-p38 and p-ERK1/2 protein. Conclusions MW-9 has significant anti-inflammatory activities both in vitro and in vivo, and its underlying mechanism for the treatment of UC may be associated with the inhibition of MAPK signaling pathway.
10. Research on the dynamic changes of neurological dysfunction and cognitive function impairment in traumatic brain injury
Cheng-Gong ZOU ; Hao FENG ; Bing CHEN ; Hui TANG ; Chuan SHAO ; Mou SUN ; Rong YANG ; Jia-Quan HE
Acta Anatomica Sinica 2024;55(1):43-48
Objective To explore the dynamic changes and mechanisms of neurological and cognitive functions in mice with traumatic brain injury (TBI). Methods Totally 60 12⁃month⁃old Balb/ c mice were divided into control group (10 in group) and TBI group (50 in group). TBT model mice were divided into 5 subgroups according to the time of model construction, including model 1 day, model 1 day, model 3 day, model 7 day, model 14 days and model 28 days group with 10 in each group. At the 29th day of the experiment, neurological scores and step down tests were carried out. After the test, the mice were sacrificed for brains which were detected by immunohistochemistry staining, inflammatory cytokine tests and Western blotting. Results Compared with the control group, the neurological scores of mice in TBI group increased, and then decreased after the 7th day when the scores reached the peak. However, the latency of step down errors was lower than control group, and the number of step down errors was higher than control group which had no changes. Compared with the control group, the expression of lonized calcium⁃binding adapter molecule 1(IBA1), chemokine C⁃X3⁃C⁃motif ligand1 (CX3CL1), C⁃X3⁃C chemokine receptor 1(CX3CR1), NOD⁃like receptor thermal protein domain associated protein 3 (NLRP3), and phosphorylation nuclear factor(p⁃NF)⁃κB in TBI group increased and reached to the peak at the 7th day, and then started to decrease. At the same time, the levels of inflammatory cytokines interleukin⁃6(IL⁃6) and tumor necrosis factor⁃α(TNF⁃α) first increased to the peak, and then began to decrease. However, compared with the control group, the expression of amyloid β(Aβ) protein and p⁃Tau protein in the model group continued to increase at all time. Conclusion The TBI model caused continuous activation of microglia along with inflammatory response, which first increased and then decreased, resultsing in neurological scores changes. In addition, the inflammatory response may act as a promoter of Aβ protein deposition and Tau protein phosphorylation, leading to cognitive impairment in mice.

Result Analysis
Print
Save
E-mail