1.IL-17 as a molecular adjuvant on enhancing cellular immune responses to HIV DNA vaccination
Qiang LIU ; Jin JIN ; Qiang ZOU ; Shuo ZHANG ; Zheng DING ; Hanqian XU ; Zhibo MA ; Tong ZHANG ; Bin WANG
Chinese Journal of Microbiology and Immunology 2010;30(3):256-262
Objective To investigate IL-17 as adjuvant effect on the humoral and cellular immune responses to HIV DNA vaccine by immunizing mice with HIV DNA vaccine plus IL-17. Methods We immunized the BALB/c mice with pGX-Env alone, or with pcDNA3-IL-17 by intramuscular injection. The immunization was performed on week 0, 2. The concentration of the anti-Env IgG, the stimulated index of T lymphocyte proliferation, and the expression of IFN-γ, IL-4 and IL-17 in CD4~+T cell and IFN-γ in CD8~+ T cell, specific in vivo cytotoxic T lymphocyte (CTL) activity were detected at week 4. Results We show here that IL-17 as a molecular adjuvant with the HIV DNA vaccine, pGX-Env, can enhance immune responses. Interestingly, IL-17 has no adjuvant effect on the responses for T cell proliferation, antibody production and expressions of IFN-γ, IL-4 and IL-17 in CD4~+ T cells, but rather on the up-regulation of IFN-γ in CD8~+ T cells and CTL in vivo significantly(P<0.05). Conclusion The data suggest that IL-17 as the molecular adjuvant may not effect the development and differentiation of CD4~+ Th cells, but directly affect on the CD8~+ T cell functions. The novel functionality of IL-17 on adaptive immunity may lead to develop effecfive HIV DNA vaccination targeted to potentiate the CD8~+ T cell functions.
2.Analysis of Pharmacodynamic Material Basis of Qingyan Formula Based on UPLC-Q-Orbitrap-MS and Molecular Docking
Zhao ZOU ; Jiashan LI ; Ying XU ; Yibo YANG ; Panyu XU ; Hanqian DU ; Weifeng ZHU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(22):159-166
ObjectiveTo study the constituents migrating to blood of Qingyan formula by serum pharmacochemistry, and investigate the binding energy between these constituents and estrogen receptor (ER), so as to confirm the pharmacodynamic material basis of Qingyan formula in rats. MethodUltra-high performance liquid chromatography-quadrupole electrostatic field-orbital trap high resolution mass spectrometry (UPLC-Q-Orbitrap-MS) was used to determine the constituents migrating to blood of Qingyan formula in rats by comparing the fingerprint differences of 70% ethanol extract of Qingyan formula, 70% ethanol extract of each single drug in this formula, blank serum and serum after administration of 70% ethanol extract of Qingyan formula, according to the retention time, relative molecular weight and the primary and secondary ion fragments provided by MS. Mobile phase was 0.1% formic acid aqueous solution (A)-acetonitrile(B) for gradient elution (0-5 min, 2%-20%B; 5-10 min; 20%-50%B; 10-15 min, 50%-80%B; 15-25 min, 80%-95%B; 25-26 min, 95%-2%B; 26-30 min, 2%B), the flow rate was 0.3 mL·min-1 and the injection volume was 5 μL, electrospray ionization was used with detection range of m/z 150-2 000, positive and negative ion scanning modes. Molecular docking technology was used to characterize the binding energy of constituents migrating to blood with ERα and ERβ, and to confirm the material basis of this formula. ResultAfter oral administration of Qingyan formula, 30 components were detected in serum, of which 9 were prototype components and 21 were metabolites. Nine prototype components were identified as monotropein, asperuloside, verbascoside, β-ecdysone, allantoin, deacetyl asperuloside acid, echinacoside, betaine and caffeic acid, 21 metabolites mainly included organic acids, amino acids, cholines and so on. The binding energies of the above 9 prototype components with ERα were -6.7, -8.9, -6.0, -5.7, -5.3, -4.9, -7.3, -3.3, -6.3 kcal·mol-1 (1 kcal≈4 184 J), and the binding energies of them with ERβ were -6.6, -7.2, -7.7, 8.0, -7.4, -5.5, -6.9, -3.6, -6.4 kcal·mol-1, respectively. ConclusionThese nine prototype components into blood are the active ingredients of Qingyan formula that play estrogen-like role in the body, which can provide experimental basis for the formulation of quality standards and subsequent research and development of Qingyan formula.
3.Effect and Mechanism of Cuscutae Semen Total Flavonoids Combined with Tripterygium wilfordii Polyglycoside Tablets on Ovarian Germline Stem Cells of Physiological Mice by Notch Signaling Pathway
Yibo YANG ; Ying XU ; Lu WANG ; Zhao ZOU ; Panyu XU ; Hanqian DU ; Jiashan LI ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(5):9-15
ObjectiveTo observe the effect of Cuscutae Semen total flavonoids combined with Tripterygium wilfordii polyglycoside tablets (TWPT) on ovarian germline stem cells of female physiological mice through neurogenic locus notch homolog (Notch) signaling pathway. MethodSixty female Kunming mice (5 weeks old) were randomly divided into normal group, Tripterygium wilfordii polyglycoside tablets low-, high-dose groups (13.65 mg·kg-1·d-1 and 27.3 mg·kg-1·d-1, 1 and 2 times clinical equivalent dose), Cuscutae Semen total flavonoids low- and high-dose groups (150 mg·kg-1·d-1 and 300 mg·kg-1·d-1), and combination group (13.65 mg·kg-1·d-1 TWPT and 150 mg·kg-1·d-1 Cuscutae Semen total flavonoids), with 10 in each group. After 3 weeks of continuous administration, the uterus/brain and ovarian/brain indexes were calculated, and the pathological changes of ovarian tissue were observed under light microscope. The content of estradiol in serum was determined by enzyme linked immunosorbent assay (ELISA). Immunofluorescence assay was performed to observe the expressions of germline stem cell markers in ovarian epithelium, including mouse vasa homologue (Mvh), octamer-binding transcription factor 4 (Oct4), tyrosine-protein kinase receptor (c-kit), Nanog, Notch signaling pathway molecules, neurogenic locus notch homolog protein 1 (Notch1), hes family BHLH transcription factor 1(Hes1), and jagged canonical Notch ligand 1 (JAG1). ResultCompared with the normal group, low and high doses of TWPT had no significant effect on the uterus/brain and ovary/brain indexes and the uterus and ovary morphologies of mice, while only the number of atretic follicles was increased (P<0.01). The expressions of ovarian germline stem cell markers and Notch signaling pathway molecules had a decreasing trend in TWPT low-dose group, while the expressions of Mvh, c-kit, and Nanog were down-regulated (P<0.05, P<0.01) and the expressions of Notch1 and Hes1 were also reduced (P<0.01) in TWPT high-dose group. However, the above indexes were increased in Cuscutae Semen total flavonoids low-dose group (P<0.05, P<0.01). Compared with the low does of TWPT group, the combination group had a decrease in the increased number of atretic follicles (P<0.01), an improvement in the down-regulated expressions of Mvh and Nanog (P<0.01), and an increase in the expressions of Notch1 and Hes1 (P<0.05, P<0.01). ConclusionOvarian germline stem cells are the source target of the reproductive toxicity of TWPT. Cuscutae Semen total flavonoids participate in the regulation of the germline stem cell pathways to alleviate the reproductive toxicity caused by TWPT, and its mechanism of action may be related to the Notch signaling pathway.
4.Optimization and Mechanism Exploration of Tusizi Prescription for Ovarian Reserve Function Based on Uniform Design Method
Yuan LI ; Hanqian DU ; Jiashan LI ; Li GUO ; Zehui LI ; Na LIN ; Ying XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):53-62
ObjectiveTo optimize Tusizi prescription for ovarian reserve function based on the uniform design method combined with in vitro experiments and explore the underlying mechanisms of this prescription. MethodsThe uniform design method was adopted to design a 5-factor 11-level experiment on the water extract of Tusizi prescription. The cell-counting kit-8 (CCK-8) assay was employed to measure the viability of human ovarian granulosa cells (KGN cells) treated with Tusizi prescription extracts 1-11, and multivariate regression analysis was performed to determine the optimal herb ratio in this prescription. The potential targets of active ingredients in the prescription were retrieved from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM). The common targets shared by Tusizi prescription and diminished ovarian reserve (DOR) were selected and imported into search tool for the retrieval of interacting genes/proteins (STRING) to construct a protein-protein interaction (PPI) network and into gene function annotation database (DAVID) for gene ontology (GO) analysis. The CCK-8 assay was used to measure the viability of ovarian germline stem cells treated with hyperoside. The CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, terminal-deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) were employed to examine the proliferation, apoptosis, and estradiol (E2) secretion of KGN cells treated with the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design. On this basis, the optimal prescription composition for maximizing the effect on ovarian reserve function was determined and preliminary insights into the underlying mechanisms of this prescription were gained. ResultsA total of 147 common targets were obtained from 278 targets of Tusizi prescription and 1 721 targets of DOR. GO analysis revealed 194 biological processes, primarily involving cellular responses to exogenous compound stimuli, negative regulation of apoptotic process, and positive regulation of cell proliferation. It identified 84 cellular components, including cell membrane, mitochondria, and neuronal cell body, as well as 144 molecular functions such as enzyme binding, estrogen response element binding, and nuclear estrogen receptor binding. The multivariate regression analysis revealed that when Tusizi prescription was composed of Cuscutae Semen, Lycii Fructus, Dioscoreae Rhizoma, Poria, and Nelumbinis Semen in a ratio of 27∶30∶17∶12∶14, the water extract of Tusizi prescription had the best effect of enhancing the viability of KGN cells. CCK-8 results showed that compared with the normal group, the hyperoside group demonstrated increased viability of ovarian germline stem cells (P<0.01). The CCK-8, EdU, and ELISA results showed that compared with the normal group, the optimal prescription screened by uniform design and the water extract 11 of Tusizi prescription increased the proliferation and reduced the apoptosis of KGN cells (P<0.05, P<0.01). ELISA results showed that compared with the normal group, the water extract 11 of Tusizi prescription promoted the E2 secretion of KGN cells (P<0.05), while the optimal prescription screened by uniform design had no significant effect on the E2 secretion. ConclusionBoth the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 27∶30∶17∶12∶14) can improve the ovarian reserve function, and the former has better effect. Tusizi prescription can modulate biological processes (such as cell proliferation and apoptosis) and molecular functions (such as enzyme binding and estrogen response element binding) through active components like hyperoside to promote the proliferation and E2 secretion and inhibit the apoptosis of KGN cells, thereby protecting the ovarian reserve function.
5.Optimization and Mechanism Exploration of Tusizi Prescription for Ovarian Reserve Function Based on Uniform Design Method
Yuan LI ; Hanqian DU ; Jiashan LI ; Li GUO ; Zehui LI ; Na LIN ; Ying XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):53-62
ObjectiveTo optimize Tusizi prescription for ovarian reserve function based on the uniform design method combined with in vitro experiments and explore the underlying mechanisms of this prescription. MethodsThe uniform design method was adopted to design a 5-factor 11-level experiment on the water extract of Tusizi prescription. The cell-counting kit-8 (CCK-8) assay was employed to measure the viability of human ovarian granulosa cells (KGN cells) treated with Tusizi prescription extracts 1-11, and multivariate regression analysis was performed to determine the optimal herb ratio in this prescription. The potential targets of active ingredients in the prescription were retrieved from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM). The common targets shared by Tusizi prescription and diminished ovarian reserve (DOR) were selected and imported into search tool for the retrieval of interacting genes/proteins (STRING) to construct a protein-protein interaction (PPI) network and into gene function annotation database (DAVID) for gene ontology (GO) analysis. The CCK-8 assay was used to measure the viability of ovarian germline stem cells treated with hyperoside. The CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, terminal-deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) were employed to examine the proliferation, apoptosis, and estradiol (E2) secretion of KGN cells treated with the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design. On this basis, the optimal prescription composition for maximizing the effect on ovarian reserve function was determined and preliminary insights into the underlying mechanisms of this prescription were gained. ResultsA total of 147 common targets were obtained from 278 targets of Tusizi prescription and 1 721 targets of DOR. GO analysis revealed 194 biological processes, primarily involving cellular responses to exogenous compound stimuli, negative regulation of apoptotic process, and positive regulation of cell proliferation. It identified 84 cellular components, including cell membrane, mitochondria, and neuronal cell body, as well as 144 molecular functions such as enzyme binding, estrogen response element binding, and nuclear estrogen receptor binding. The multivariate regression analysis revealed that when Tusizi prescription was composed of Cuscutae Semen, Lycii Fructus, Dioscoreae Rhizoma, Poria, and Nelumbinis Semen in a ratio of 27∶30∶17∶12∶14, the water extract of Tusizi prescription had the best effect of enhancing the viability of KGN cells. CCK-8 results showed that compared with the normal group, the hyperoside group demonstrated increased viability of ovarian germline stem cells (P<0.01). The CCK-8, EdU, and ELISA results showed that compared with the normal group, the optimal prescription screened by uniform design and the water extract 11 of Tusizi prescription increased the proliferation and reduced the apoptosis of KGN cells (P<0.05, P<0.01). ELISA results showed that compared with the normal group, the water extract 11 of Tusizi prescription promoted the E2 secretion of KGN cells (P<0.05), while the optimal prescription screened by uniform design had no significant effect on the E2 secretion. ConclusionBoth the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 27∶30∶17∶12∶14) can improve the ovarian reserve function, and the former has better effect. Tusizi prescription can modulate biological processes (such as cell proliferation and apoptosis) and molecular functions (such as enzyme binding and estrogen response element binding) through active components like hyperoside to promote the proliferation and E2 secretion and inhibit the apoptosis of KGN cells, thereby protecting the ovarian reserve function.