1.Effect of Heated Needle on the Pathological Changes of Articular Cartilage in Mice with Experimental Knee Osteoarthritis
Guohua LIN ; Wanyao LI ; Guolong SU
Journal of Guangzhou University of Traditional Chinese Medicine 2004;0(05):-
[Objective] To observe the effect of heated needle on the pathological changes of articular cartilage in mice with experimental knee osteoarthritis (OA). [ Methods ] Sixty-four NIH mice were randomly divided into 4 groups: heated needle group, electro-acupuncture (EA) group, model group and normal control group, 16 mice in each group. The mice models with knee OA were made with Xie's method, and then were treated for 2 weeks according to the experimental design. [Results] After treatment, the movable angle of right back knee in mice was increased in heated needle group and EA group ( P
2.Prognostic model of small sample critical diseases based on transfer learning.
Jing XIA ; Su PAN ; Molei YAN ; Guolong CAI ; Jing YAN ; Gangmin NING
Journal of Biomedical Engineering 2020;37(1):1-9
Aiming at the problem that the small samples of critical disease in clinic may lead to prognostic models with poor performance of overfitting, large prediction error and instability, the long short-term memory transferring algorithm (transLSTM) was proposed. Based on the idea of transfer learning, the algorithm leverages the correlation between diseases to transfer information of different disease prognostic models, constructs the effictive model of target disease of small samples with the aid of large data of related diseases, hence improves the prediction performance and reduces the requirement for target training sample quantity. The transLSTM algorithm firstly uses the related disease samples to pretrain partial model parameters, and then further adjusts the whole network with the target training samples. The testing results on MIMIC-Ⅲ database showed that compared with traditional LSTM classification algorithm, the transLSTM algorithm had 0.02-0.07 higher AUROC and 0.05-0.14 larger AUPRC, while its number of training iterations was only 39%-64% of the traditional algorithm. The results of application on sepsis revealed that the transLSTM model of only 100 training samples had comparable mortality prediction performance to the traditional model of 250 training samples. In small sample situations, the transLSTM algorithm has significant advantages with higher prediciton accuracy and faster training speed. It realizes the application of transfer learning in the prognostic model of critical disease with small samples.