1.Preparation and release behaviour of mesoporous silica/ethylcellulose sustained-release mini-matrix.
Qiaoli WU ; Guilan QUAN ; Yu HONG ; Linna WU ; Youmei ZENG ; Ge LI ; Xin PAN ; Chuanbin WU
Acta Pharmaceutica Sinica 2015;50(4):492-9
Hot-melt extrusion was applied to prepare mesoporous silica/ethylcellulose mini-matrix for sustained release, and fenofibrate was used as a model drug, ethylcellulose and xanthan gum were chosen as sustained-release agent and releasing moderator, respectively. This novel matrix obtained the controlled release ability by combining mesoporous silica drug delivery system and hot-melt extrusion technology. And mesoporous silica particle (SBA-15) was chosen as drug carrier to increase the dissolution rate of fenofibrate in this martix. Scanning electron microscope, transmission electron microscope, small angle X-ray powder diffraction and N2 adsorption-desorption were introduced to determine the particle morphology, particle size and pore structure of the synthesized SBA-15. The results showed that SBA-15 had a very high Brunauer-Emmett-Teller specific surface area, a narrow pore size distribution, large pore volume and a ordered two-dimensional hexagonal structure of p6mm symmetry. Differential scanning calorimetry and X-ray powder diffraction results demonstrated that fenofibrate dispersed in an amorphous state inside the pores of the mesoporous silica which contributed to the improvement in the dissolution rate. The drug release of mini-matrices was influenced by ethylcellulose viscosity grades and xanthan gum concentration, which increased with the increasing of xanthan gum concentration and decreasing of ethylcellulose viscosity. Mini-matrix containing 22% xanthan gum exhibited a good sustained release performance, and the drug release behavior followed the first-order kinetics.
2.Improving the dissolution rate of poorly water-soluble resveratrol by the ordered mesoporous silica.
Guilan QUAN ; Bao CHEN ; Zhouhua WANG ; Han WU ; Xintian HUANG ; Linna WU ; Chuanbin WU
Acta Pharmaceutica Sinica 2012;47(2):239-43
The aim of this study is to synthesize the ordered mesoporous silica (OMS) as drug carrier to improve release property of insoluble drug and investigate the dissolution profile of insoluble drug from the porous carrier. The OMS was obtained by using cetyltrimethyl ammonium bromide as the template and resveratrol was selected as the model drug. The resveratrol-loaded OMS (Res-OMS) were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray diffraction (XRD) and FT-IR spectroscopy. In vitro drug release behavior was also investigated. It was found that the synthesized OMS showed a large surface area, a narrow pore size distribution and an important mesoporosity associated to hexagonally organized channels. Compared with physical mixture and crystalline powder, resveratrol was in amorphous or molecular form after loading into OMS. The release rate ofresveratrol from drug-loaded OMS was significantly increased suggesting the great potential application of OMS for the formulation of poorly soluble drugs.
3.Mesoporous silica nanoparticles for drug and gene delivery.
Yixian ZHOU ; Guilan QUAN ; Qiaoli WU ; Xiaoxu ZHANG ; Boyi NIU ; Biyuan WU ; Ying HUANG ; Xin PAN ; Chuanbin WU
Acta Pharmaceutica Sinica B 2018;8(2):165-177
Mesoporous silica nanoparticles (MSNs) are attracting increasing interest for potential biomedical applications. With tailored mesoporous structure, huge surface area and pore volume, selective surface functionality, as well as morphology control, MSNs exhibit high loading capacity for therapeutic agents and controlled release properties if modified with stimuli-responsive groups, polymers or proteins. In this review article, the applications of MSNs in pharmaceutics to improve drug bioavailability, reduce drug toxicity, and deliver with cellular targetability are summarized. Particularly, the exciting progress in the development of MSNs-based effective delivery systems for poorly soluble drugs, anticancer agents, and therapeutic genes are highlighted.
4.Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs.
Ting LIU ; Minglong CHEN ; Jintao FU ; Ying SUN ; Chao LU ; Guilan QUAN ; Xin PAN ; Chuanbin WU
Acta Pharmaceutica Sinica B 2021;11(8):2326-2343
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.
5.Tailored core‒shell dual metal-organic frameworks as a versatile nanomotor for effective synergistic antitumor therapy.
Biyuan WU ; Jintao FU ; Yixian ZHOU ; Sulan LUO ; Yiting ZHAO ; Guilan QUAN ; Xin PAN ; Chuanbin WU
Acta Pharmaceutica Sinica B 2020;10(11):2198-2211
Malignant tumor has become an urgent threat to global public healthcare. Because of the heterogeneity of tumor, single therapy presents great limitations while synergistic therapy is arousing much attention, which shows desperate need of intelligent carrier for co-delivery. A core‒shell dual metal-organic frameworks (MOFs) system was delicately designed in this study, which not only possessed the unique properties of both materials, but also provided two individual specific functional zones for co-drug delivery. Photosensitizer indocyanine green (ICG) and chemotherapeutic agent doxorubicin (DOX) were stepwisely encapsulated into the nanopores of MIL-88 core and ZIF-8 shell to construct a synergistic photothermal/photodynamic/chemotherapy nanoplatform. Except for efficient drug delivery, the MIL-88 could be functioned as a nanomotor to convert the excessive hydrogen peroxide at tumor microenvironment into adequate oxygen for photodynamic therapy. The DOX release from MIL-88-ICG@ZIF-8-DOX nanoparticles was triggered at tumor acidic microenvironment and further accelerated by near-infrared (NIR) light irradiation. The
6.A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility.
Yixian ZHOU ; Boyi NIU ; Biyuan WU ; Sulan LUO ; Jintao FU ; Yiting ZHAO ; Guilan QUAN ; Xin PAN ; Chuanbin WU
Acta Pharmaceutica Sinica B 2020;10(12):2404-2416
Pulmonary drug delivery has attracted increasing attention in biomedicine, and porous particles can effectively enhance the aerosolization performance and bioavailability of drugs. However, the existing methods for preparing porous particles using porogens have several drawbacks, such as the inhomogeneous and uncontrollable pores, drug leakage, and high risk of fragmentation. In this study, a series of cyclodextrin-based metal-organic framework (CD-MOF) particles containing homogenous nanopores were delicately engineered without porogens. Compared with commercial inhalation carrier, CD-MOF showed excellent aerosolization performance because of the homogenous nanoporous structure. The great biocompatibility of CD-MOF in pulmonary delivery was also confirmed by a series of experiments, including cytotoxicity assay, hemolysis ratio test, lung function evaluation,
7.Efficacy and safety of Omalizumab for the treatment of pediatric allergic asthma: a retrospective multicenter real-world study in China
Li XIANG ; Baoping XU ; Huijie HUANG ; Mian WEI ; Dehui CHEN ; Yingying ZHAI ; Yingju ZHANG ; Dan LIANG ; Chunhui HE ; Wei HOU ; Yang ZHANG ; Zhimin CHEN ; Jingling LIU ; Changshan LIU ; Xueyan WANG ; Shan HUA ; Ning ZHANG ; Ming LI ; Quan ZHANG ; Leping YE ; Wei DING ; Wei ZHOU ; Ling LIU ; Ling WANG ; Yingyu QUAN ; Yanping CHEN ; Yanni MENG ; Qiusheng GE ; Qi ZHANG ; Jie CHEN ; Guilan WANG ; Dongming HUANG ; Yong YIN ; Mingyu TANG ; Kunling SHEN
Chinese Journal of Applied Clinical Pediatrics 2023;38(1):64-71
Objective:To assess the clinical effectiveness and safety of Omalizumab for treating pediatric allergic asthma in real world in China.Methods:The clinical data of children aged 6 to 11 years with allergic asthma who received Omalizumab treatment in 17 hospitals in China between July 6, 2018 and September 30, 2020 were retrospectively analyzed.Such information as the demographic characteristics, allergic history, family history, total immunoglobulin E (IgE) levels, specific IgE levels, skin prick test, exhaled nitric oxide (FeNO) levels, eosinophil (EOS) counts, and comorbidities at baseline were collected.Descriptive analysis of the Omalizumab treatment mode was made, and the difference in the first dose, injection frequency and course of treatment between the Omalizumab treatment mode and the mode recommended in the instruction was investigated.Global Evaluation of Treatment Effectiveness (GETE) analysis was made after Omalizumab treatment.The moderate-to-severe asthma exacerbation rate, inhaled corticosteroid (ICS) dose, lung functions were compared before and after Omalizumab treatment.Changes in the Childhood Asthma Control Test (C-ACT) and Pediatric Asthma Quality of Life Questionnaire (PAQLQ) results from baseline to 4, 8, 12, 16, 24, and 52 weeks after Omalizumab treatment were studied.The commodity improvement was assessed.The adverse event (AE) and serious adverse event (SAE) were analyzed for the evaluation of Omalizumab treatment safety.The difference in the annual rate of moderate-to-severe asthma exacerbation and ICS reduction was investigated by using t test.The significance level was set to 0.05.Other parameters were all subject to descriptive analysis.A total of 200 allergic asthma patients were enrolled, including 75.5% ( n=151) males and 24.5% ( n=49) females.The patients aged (8.20±1.81) years. Results:The median total IgE level of the 200 patients was 513.5 (24.4-11 600.0) IU/mL.Their median treatment time with Omalizumab was 112 (1-666) days.Their first dose of Omalizumab was 300 (150-600) mg.Of the 200 cases, 114 cases (57.0%) followed the first Omalizumab dosage recommended in the instruction.After 4-6 months of Omalizumab treatment, 88.5% of the patients enrolled ( n=117) responded to Omalizumab.After 4 weeks of treatment with Omalizumab, asthma was well-controlled, with an increased C-ACT score [from (22.70±3.70) points to (18.90±3.74) points at baseline]. Four-six months after Omalizumab administration, the annual rate of moderate-to-severe asthma exacerbation had a reduction of (2.00±5.68) per patient year( t=4.702 5, P<0.001), the median ICS daily dose was lowered [0 (0-240) μg vs. 160 (50-4 000) μg at baseline] ( P<0.001), the PAQLQ score was improved [(154.90±8.57) points vs. (122.80±27.15) points at baseline], and the forced expiratory volume in one second % predicted (FEV 1%pred) was increased [(92.80±10.50)% vs. (89.70±18.17)% at baseline]. In patients with available evaluations for comorbidities, including allergic rhinitis, atopic dermatitis or eczema, urticaria, allergic conjunctivitis and sinusitis, 92.8%-100.0% showed improved symptoms.A total of 124 AE were reported in 58 (29.0%) of the 200 patients, and the annual incidence was 0(0-15.1) per patient year.In 53 patients who suffered AE, 44 patients (83.0%) and 9 patients (17.0%) reported mild and moderate AE, respectively.No severe AE were observed in patients.The annual incidence of SAE was 0(0-1.9) per patient year.Most common drug-related AE were abdominal pain (2 patients, 1.0%) and fever (2 patients, 1.0%). No patient withdrew Omalizumab due to AE. Conclusions:Omalizumab shows good effectiveness and safety for the treatment of asthma in children.It can reduce the moderate-to-severe asthma exacerbation rate, reduce the ICS dose, improve asthma control levels, and improve lung functions and quality of life of patients.
8.Synergistic immunoreaction of acupuncture-like dissolving microneedles containing thymopentin at acupoints in immune-suppressed rats.
Qian ZHANG ; Chuncao XU ; Shiqi LIN ; Huanbin ZHOU ; Gangtao YAO ; Hu LIU ; Lili WANG ; Xin PAN ; Guilan QUAN ; Chuanbin WU
Acta Pharmaceutica Sinica B 2018;8(3):449-457
Dissolving microneedles carried drug molecules can effectively penetrate the stratum corneum of skin to improve the transdermal drug delivery. The traditional Chinese medicine acupuncture is based on the needle stimulation at a specific location (acupoint) to generate and transmit biochemical and physiological signals which alter the pathophysiological state of patients. However, the pain associated with conventional acupuncture needles and the requirement of highly trained professionals limit the development of acupuncture in non-Asian countries. The purpose of this study is to investigate whether the dissolving microneedles can be utilized as a self-administered painless replacement for acupuncture and locally released drug molecules can achieve expected therapeutic outcomes. Immunosuppressive rats were treated with acupuncture at Zusanli (ST36) acupoint using microneedles containing thymopentin. The immune functions and psychological mood of the immunosuppressed animals were examined. The proliferation of splenocytes was examined by CCK-8 assay. CD4 and CD8 expression patterns in spleen cells were detected by flow cytometry. The current study showed that use of either microneedles containing thymopentin or conventional acupuncture both resulted in immune cell proliferation, which was confirmed by flow cytometry. Furthermore, either conventional acupuncture or microneedles were able to effectively mitigate the anxiety caused by immune-suppression when applied on the ST36.
9.Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era.
Liming LIN ; Jiaying CHI ; Yilang YAN ; Rui LUO ; Xiaoqian FENG ; Yuwei ZHENG ; Dongyi XIAN ; Xin LI ; Guilan QUAN ; Daojun LIU ; Chuanbin WU ; Chao LU ; Xin PAN
Acta Pharmaceutica Sinica B 2021;11(9):2609-2644
Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.