1.Calcium-activated chloride channels are involved in two-phase hypoxic pulmonary vasoconstriction in rat pulmonary arteries.
Lei YING ; ; Hai-Xia YAO ; Lin-Jing HUANG ; Ying-Chun MA ; Jin-Bo HE ; Dan CHEN ; Hai-E CHEN ; Yang WANG ; Wan-Tie WANG
Acta Physiologica Sinica 2014;66(2):203-209
The aim of the present study was to investigate the roles of calcium-activated chloride channels (Cl(Ca)) in the two-phase hypoxic pulmonary vasoconstriction (HPV). The second pulmonary artery branches were dissected from male Sprague-Dawley rats, and the changes in vascular tone were measured by using routine blood vascular perfusion in vitro. The result showed that, under normoxic conditions, Cl(Ca) inhibitors (NFA and IAA-94) significantly relaxed second pulmonary artery contracted by norepinephrine (P < 0.01), but merely had effects on KCl-induced second pulmonary artery contractions. A biphasic contraction response was induced in second pulmonary artery ring pre-contracted with norepinephrine exposed to hypoxic conditions for at least one hour, but no biphasic contraction was observed in pulmonary rings pre-contracted with KCl. NFA and IAA-94 significantly attenuated phase II sustained hypoxic contraction (P < 0.01), and also attenuated phase I vasodilation, but had little effect on phase I contraction. These results suggest that Cl(Ca) is an important component forming phase II contraction in secondary pulmonary artery, but not involved in phase I contraction.
Animals
;
Chloride Channels
;
physiology
;
Glycolates
;
pharmacology
;
Hypoxia
;
physiopathology
;
Male
;
Norepinephrine
;
pharmacology
;
Pulmonary Artery
;
physiopathology
;
Rats
;
Rats, Sprague-Dawley
;
Vasoconstriction
;
Vasodilation
2.Role of calcium-activated chloride channels in the regulation of pulmonary vascular tone in rats.
Zhao YANG ; Zhen-Xiang ZHANG ; Yong-Jian XU ; Tao YE ; Ya-Qing LI
Chinese Journal of Applied Physiology 2006;22(2):215-218
AIMTo investigate the role of calcium-activated chloride channels and the Cl- channel blockers niflumic acid (NFA) and indanyloxyacetic acid (IAA-94) in the regulation of vascular contraction induced by phenylephrine (PE).
METHODSThe PE-induced contraction in rat pulmonary artery was observed by using routine blood vascular perfusion in vitro. The fluorescence Ca2+ indicator Fura-2/AM was used to observe intracellular free Ca2+ concentration ([Ca2+]i) of rat pulmonary artery smooth muscle cells (PASMCs) which were obtained by the acute enzyme separation method (collagenase I plus papain) on NFA and IAA-94 effects on PE-induced contraction. Changes of [Ca2+]i in PASMCs were measured by spectrofluorometry.
RESULTSThe anion channel blockers NFA and IAA-94 produced inhibitory effects on PE-induced contractions in the pulmonary artery. NFA and IAA-94 negligibly affected the KCl-induced pulmonary artery contractions. PE could increase [Ca2+]i but NFA and IAA-94 negligibly affected it.
CONCLUSIONCalcium-activated chloride channels contribute to the agonist-induced pulmonary artery contractions under physiological conditions, which may be a new clue to investigate the hypoxic pulmonary vasoconstriction.
Animals ; Calcium ; physiology ; Chloride Channels ; physiology ; Glycolates ; pharmacology ; Male ; Muscle, Smooth, Vascular ; physiology ; Niflumic Acid ; pharmacology ; Phenylephrine ; pharmacology ; Pulmonary Artery ; physiology ; Rats ; Rats, Sprague-Dawley ; Vasoconstriction
3.Preparation of paclitaxel-loaded and folic acid-modified poly (lactic-co-glycolic acid) nano-micelles and in vitro anticancer effect on cervical cancer HeLa cells.
Xin-Jian LI ; Yun YOU ; Qiong-Ling ZHANG ; Bing-Bing ZHANG ; Lin YAN ; Ze-Min OU ; Yao ZHANG ; Yan-Jing WANG ; Yan TONG ; De-Wen LIU ; Jin-Yu WANG
China Journal of Chinese Materia Medica 2021;46(10):2481-2488
The paclitaxel-loaded and folic acid-modified poly(lactic-co-glycolic acid) nano-micelles(PTX@FA-PLGA-NMs) were prepared by the emulsion solvent evaporation method, and the parameters of paclitaxel-loaded nano-micelles were optimized with the particle size and PDI as evaluation indexes. The morphology of the nano-micelles was observed by transmission electron microscopy(TEM), and the stability, drug loading and encapsulation efficiency were systematically investigated. In vitro experiments were performed to study the cytotoxic effects of nano-micelles, apoptosis, and cellular uptake. Under the optimal parameters, the nano-micelles showed the particle size of(125.3±1.2) nm, the PDI of 0.086±0.026, the zeta potential of(-20.0±3.8) mV, the drug loading of 7.2%±0.75%, and the encapsulation efficiency of 50.7%±1.0%. The nano-micelles were in regular spherical shape as observed by TEM. The blank FA-PLGA-NMs exhibited almost no inhibitory effect on the proliferation and growth of tumor cells, while the drug-loaded nano-micelles and free PTX exhibited significant inhibitory effects. The IC_(50) of PTX@FA-PLGA-NMs and PTX was 0.56 μg·mL~(-1) and 0.66 μg·mL~(-1), respectively. The paclitaxel-loaded nano-micelles were potent in inhibiting cell migration as assessed by the scratch assay. PTX@FA-PLGA-NMs had good pro-apoptotic effect on cervical cancer HeLa cells and significantly promoted the uptake of HeLa cells. The results of in vitro experiments suggested that PTX@FA-PLGA-NMs could target and treat cervical cancer HeLa cells. Therefore, as nanodrug carriers, PTX@FA-PLGA-NMs with anti-cancer activity are a promising nano-system for improving the-rapeutic effects on tumors.
Antineoplastic Agents, Phytogenic/pharmacology*
;
Cell Line, Tumor
;
Drug Carriers
;
Female
;
Folic Acid
;
Glycolates
;
HeLa Cells
;
Humans
;
Micelles
;
Paclitaxel
;
Particle Size
;
Uterine Cervical Neoplasms/drug therapy*
4.Functional characteristics and molecular identification of swelling-activated chloride conductance in adult rabbit heart ventricles.
Jingdong, LI ; Xiangqiong, WU ; Tianpen, CUI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2008;28(1):37-41
Outwardly rectifying swelling-activated chloride conductance (ICl,Swell) in rabbit heart plays a critical role in cardioprotection following ischemic preconditioning (IP). But the functional characterization and molecular basis of this chloride conductance in rabbit heart ventricular myocytes is not clear. Candidate chloride channel clones (e.g. ClC-2, ClC-3, ClC-4 and ClC-5) were determined using RT-PCR and Western blot analysis. Whole cell ICl,Swell was recorded from isolated rabbit ventricular myocytes using patch clamp techniques during hypo-osmotic stress. The inhibitory effects of 4,4' isothiocyanato-2,2-disulfonic acid (DIDS), 5-nitro-2(3-phenylroylamino) benzoic acid (NPPB) and indanyloxyacetic acid 94 (IAA-94) on ICl,Swell were examined. The expected size of PCR products for ClC-2, ClC-3 and ClC-4 but not for ClC-5 was obtained. ClC-2 and ClC-3 expression was confirmed by automated fluorescent DNA sequencing. RT-PCR and Western blot showed that ClC-4 was expressed in abundance and ClC-2 was expressed at somewhat lower levels. The biological and pharmacological properties of I(Cl,Swell), including outward rectification, activation due to cell volume change, sensitivity to DIDS, IAA-94 and NPPB were identical to those known properties of ICl,Swell in exogenously expressed systems and other mammals hearts. It was concluded that ClC-3 or ClC-4 might be responsible for the outwardly rectifying part of ICl,Swell and may be the molecular targets of cardioprotection associated with ischemic preconditioning or hypo-osmotic shock.
Biophysics/methods
;
Chlorides/*chemistry
;
Chlorides/metabolism
;
DNA Primers/chemistry
;
Electrophysiology/methods
;
Gene Expression Regulation
;
Glycolates/pharmacology
;
Heart Ventricles/*cytology
;
Ischemic Preconditioning
;
Muscle Cells/*cytology
;
Osmosis
;
Sequence Analysis, DNA
5.Anticonvulsant effect of phencynonate hydrochloride on maximal electroshock seizure and the metrazol seizure threshold test in mice.
Yong-An WANG ; Wen-Xia ZHOU ; Yan-Qin LIU ; Jian-Quan ZHENG ; Ke-Liang LIU ; Jin-Xiu RUAN
Acta Pharmaceutica Sinica 2005;40(6):501-506
AIMTo test the antiepileptic effect of phencynonate hydrochloride and investigate its antiepileptic mechanism.
METHODSThrough establishment of different epilepsy models, antiepileptic effects of phencynonate hydrochloride and other drugs were examined. Besides, the effect of phencynonate hydrochloride and other compounds against NMDA-induced lethality in mice, NMDA-induced injury in rat primary hippocampal neuronal cultures and NMDA-induced current were also observed.
RESULTSPhencynonate hydrochloride produced a significant anticonvulsant effect on different epilepsy models. Furthermore, phencynonate hydrochloride also exerted its obvious protection against the lethal effects of NMDA in mice, antagonized the NMDA-induced injury in rat primary hippocampal neuronal cultures and blocked NMDA-induced current in a dose-dependent manner.
CONCLUSIONPhencynonate hydrochloride had a notable anticonvulsant effect on typical epilepsy models, its antiepileptic mechanism might relate to its antagonism against NMDA receptor.
Animals ; Animals, Newborn ; Anticonvulsants ; pharmacology ; therapeutic use ; Aza Compounds ; pharmacology ; therapeutic use ; Cells, Cultured ; Electroshock ; Female ; Glycolates ; pharmacology ; therapeutic use ; Hippocampus ; cytology ; Lethal Dose 50 ; Male ; Mice ; N-Methylaspartate ; toxicity ; Neurons ; drug effects ; Neuroprotective Agents ; pharmacology ; Pentylenetetrazole ; Rats ; Rats, Wistar ; Seizures ; chemically induced ; drug therapy