1.Differentiated hypoglycemic effects of baicalin, berberine and puerarin on insulin-resistance HepG2 cells.
Jun TU ; Shui-Lan ZHU ; Xiao-Mei ZHOU
China Journal of Chinese Materia Medica 2018;43(20):4097-4103
To investigate the hypoglycemic effects of baicalin, berberine, puerarin and liquiritin on the insulin resistance (IR) cells. The IR model of HepG2 cells was established by treatment with insulin and dexamethasone for 48 h. Glucose uptake, glycogen content and cell viability were detected with different concentrations of baicalin, berberine, puerarin, liquiritin in IR-HepG2 cells. Compared with IR model group, all of intervened groups significantly increased the glucose consumption, except for liquiritin groups and 1 μmol·L⁻¹ baicalin group. Moreover, 10, 20, 50 μmol·L⁻¹ baicalin, 5, 10, 20, 50 μmol·L⁻¹ berberine and 40, 80, 160 μmol·L⁻¹ puerarin significantly elevated glycogen content in IR-HepG2 cells. Liquiritin did not show obvious hypoglycemic effect. Compared with normal group, the mRNA expression levels of GLUT1 and GLUT4 were decreased in IR-HepG2 cells according to qPCR results. 5, 20 μmol·L⁻¹ berberine decreased the mRNA expression level of GLUT1 in IR-HepG2 cells, whereas 20, 40, 80 μmol·L⁻¹ puerarin significantly elevated the mRNA expression level of GLUT1. Moreover, 10, 20, 50 μmol·L⁻¹ baicalin and 20 μmol·L⁻¹ berberine increased the mRNA expression level of GLUT4. Whereas, 40, 80 μmol·L⁻¹ puerarin decreased the mRNA expression level of GLUT4. Western blot results suggested that 10, 20, 50 μmol·L⁻¹ baicalin significantly increased the protein expressions of GLUT2 and GLUT4, whereas 20, 40, 80 μmol·L⁻¹ puerarin significantly up-regulated GLUT1 and GLUT2 proteins. In addition, 20 μmol·L⁻¹ berberine increased the protein expressions of GLUT2 and GLUT4, whereas 10 μmol·L⁻¹ berberine up-regulated GLUT4 expression. The results preliminarily suggested that baicalin, berberine and puerarin have differentiated hypoglycemic effects, which accelerate glucose transport, increase glycogen synthesis, regulate glucose metabolism and improve hepatic IR.
Berberine
;
pharmacology
;
Flavonoids
;
pharmacology
;
Glucose
;
Hep G2 Cells
;
Humans
;
Hypoglycemic Agents
;
pharmacology
;
Insulin
;
Insulin Resistance
;
Isoflavones
;
pharmacology
2.Comparison of a glucose consumption based method with the CLSI M38-A method for testing antifungal susceptibility of Trichophyton rubrum and Trichophyton mentagrophytes.
Jing ZHANG ; Jian CHEN ; Huai-Qiu HUANG ; Li-Yan XI ; Wei LAI ; Ru-Zeng XUE ; Xiao-Hui ZHANG ; Rong-Zhang CHEN
Chinese Medical Journal 2010;123(14):1909-1914
BACKGROUNDThe prevalence of dermatophytoses and the development of new antifungal agents has focused interest on susceptibility tests of dermatophytes. The method used universally for susceptibility tests of dermatophytes was published as document (M38-A) in 2002 by the Clinical and Laboratory Standards Institute (CLSI), dealing with the standardization of susceptibility tests in filamentous fungi, though not including dermatophytes especially. However, it is not a very practical method for the clinical laboratory in routine susceptibility testing. In this test, we developed a novel rapid susceptibility assay-glucose consumption method (GCM) for dermatophytes.
METHODSIn this study, we investigated the antifungal susceptibilities of dermatophytes to itraconazole (ITC), voriconazole (VOC), econazole nitrate (ECN) and terbinafine (TBF) by glucose consumption method (GCM), in comparison to the Clinical and Laboratory Standards Institute (CLSI) M38-A method. Twenty-eight dermatophyte isolates, including Trichophyton rubrum (T. rubrum) (n = 14) and Trichophyton mentagrophytes (T. mentagrophytes) (n = 14), were tested. In the GCM, the minimum inhibitory concentrations (MICs) were determined spectrophotometrically at 490 nm after addition of enzyme substrate color mix. For the CLSI method, the MICs were determined visually.
RESULTSComparison revealed best agreement for TBF against T. mentagrophytes and T. rubrum, since MIC range, MIC50, and MIC90 were identical from two methods. However, for ITC and VOC, GCM showed wider MIC ranges and higher MICs than CLSI methods in most isolates. For ECN against T. rubrum, high MICs were tested by GCM (0.125-16 microg/ml) but not M38-A method (0.5-1 microg/ml). The overall agreements for all isolates between the two methods within one dilution and two dilutions for ITC, VOC, ECN and TBF was 53.6% and 75.0%, 57.1% and 75.0%, 82.1% and 89.3%, and 85.7 and 85.7%, respectively.
CONCLUSIONMeasurement of glucose uptake can predict the susceptibility of T. rubrum and T. mentagrophytes to ECN and TBF.
Antifungal Agents ; pharmacology ; Econazole ; pharmacology ; Glucose ; metabolism ; Itraconazole ; pharmacology ; Microbial Sensitivity Tests ; Naphthalenes ; pharmacology ; Pyrimidines ; pharmacology ; Triazoles ; pharmacology ; Trichophyton ; drug effects ; metabolism ; Voriconazole
3.Comparative proteome analysis of Bifidobacterium longum NCC2705 grown on fructose and glucose.
Zhongke SUN ; Xin BO ; Xiang HE ; Zheng JIANG ; Fang WANG ; Hongqing ZHAO ; Dawei LIU ; Jing YUAN
Chinese Journal of Biotechnology 2008;24(8):1401-1406
To demonstrate the fructose metabolism pathway in Bifidobacterium Longum NCC2705 and to construct its fermentation model, we explored the comparative proteome cultivating the strain on glucose or fructose, based on a proteomic reference map of B. longum NCC2705 constructed earlier. Then, we used matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and electro-spray ionization tandem mass spectrometry (ESI-MS/MS) for differently expressed proteins identification. Furthermore, with semi-quantitative RT-PCR we determined the distinctively expressed proteins at the level of transcription. Proteomic comparison of glucose- and fructose-grown cells demonstrated much similarity. On the page of fructose there were all the enzymes and proteins that exist during the process of glucose degradation. We observed a greater variation of more than three-fold for the identified 9 spots representing 5 protein entries by MALDI-TOF MS. The sugar-binding protein specific to fructose (BL0033) and an ABC transporter ATP binding protein (BL0034) showed higher expression level from cells grown on fructose. It was also determined by semi-quantitative RT-PCR subsequently. BL0033 time course and concentration experiments showed that the induction time correlated to higher fructose concentration, and increased expression of BL0033. Fructose was catabolized via the same degradation pathway as glucose at the level of proteomics. BL0033 was induced by fructose. All results suggest that the uptake of fructose into the cell may be conducted by a specific ABC transport system, in which BL0033 and BL0034 as components might have played an important role.
Bifidobacterium
;
chemistry
;
genetics
;
metabolism
;
Culture Media
;
Fermentation
;
Fructose
;
pharmacology
;
Glucose
;
pharmacology
;
Proteome
;
analysis
;
genetics
;
Proteomics
;
methods
4.Effects of mifepristone on protection of progesterone against oxygen-glucose deprivation injury in PC12 cells.
Chun-Ping WU ; Guo-Hong WANG ; Yong ZHANG ; Dong-Liang LI
Chinese Journal of Applied Physiology 2013;29(2):132-134
Animals
;
Cell Hypoxia
;
Glucose
;
metabolism
;
Mifepristone
;
pharmacology
;
Oxidative Stress
;
PC12 Cells
;
Progesterone
;
pharmacology
;
Rats
5.Regulatory effects of glabridin and quercetin on energy metabolism of breast cancer cells.
Lu-Jia LI ; Guo-Wen LI ; Yan XIE
China Journal of Chinese Materia Medica 2019;44(17):3786-3791
It is reported that energy metabolism is the core feature of tumor cells. This study is aimed to investigate the regulatory effect of two flavonoids( glabridin and quercetin) on energy supply and glycolysis of breast cancer cells,and provide reference for developing some anticancer herbal drugs with the function of regulating tumor energy metabolism. Based on the characteristics of each pathway during energy metabolism,in the present study,the triple negative breast cancer tumor cells( MDA-MB-231) were selected to investigate the effects of glabridin and quercetin on the energy metabolism of breast cancer cells and discuss the possible mechanisms from the following five potential targets: glucose uptake,protein expression of glucose transporter 1( GLUT1),adenosine triphosphate( ATP) level,lactate dehydrogenase( LDH) activity,and lactic acid( LD) concentration. The results showed that both quercetin and glabridin could decrease the glucose uptake capacity of breast cancer cells by down-regulating the protein expression of GLUT1. Quercetin had no significant effect on LDH activity and LD concentration; it did not affect the glycolysis process,but increased the intracellular ATP level. Glabridin decreased the activity of LDH and reduced LD concentration,thereby inhibiting the glycolysis metabolism of breast cancer cells. Therefore,both quercetin and glabridin can regulate the energy metabolism of breast cancer cells and can be used as potential anticancer agents or anti-cancer adjuvants.
Breast Neoplasms
;
metabolism
;
Cell Line, Tumor
;
Energy Metabolism
;
Glucose
;
metabolism
;
Glucose Transporter Type 1
;
metabolism
;
Humans
;
Isoflavones
;
pharmacology
;
Phenols
;
pharmacology
;
Quercetin
;
pharmacology
6.Advances of studies on platelet additive solutions - review.
Journal of Experimental Hematology 2008;16(3):721-724
Platelet additive solutions (PAS) can partly or fully substitute blood plasma during platelet storage in normal air temperature. There are some advantages such as avoiding transfusion of large volume of plasma with possible adverse reactions and circulatory overload, saving plasma for other purposes, improving storage conditions, maintaining the viability and haemostatic function of platelet at normal level, and making it easy to inactivate pathogens. There has been an increasing interest in the study of PAS in the past 20 years, the compositions of different PAS have been reported one after another, and the protective effects of PAS on platelets have become better and better. This article focuses on the advances of studies of the composition of PAS, the functions of the different compositions and platelet quality in vitro and in vivo after storage.
Acetates
;
pharmacology
;
Blood Platelets
;
Blood Preservation
;
methods
;
trends
;
Citrates
;
pharmacology
;
Glucose
;
pharmacology
;
Humans
;
Platelet Transfusion
;
adverse effects
;
methods
7.Compatibility research of Yiqi Fumai injection with clinical combination based on isothermal titration calorimetry.
Hong-yu LIU ; Li-na MA ; Ping ZHANG ; Xue FENG ; Xiao-he XIAO ; Shao-gui LIU ; Ya-ming ZHANG
China Journal of Chinese Materia Medica 2015;40(5):889-893
To reveal the characterization of interaction between Chinese and western medicinal injections, isothermal titration calorimetry (ITC) was applied to evaluating the interaction of Yiqi Fumai injection (YQFM, as mode drug) with epinephrine hydrochloride injection (YS) and 5% glucose injection (5% GS). The diversification of Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were determined to judge the reaction types of colliquefaction procedures of different injections. Meanwhile, the fingerprints of YQFM before and after combined with the various injections were compared to validate the results. This work demonstrated that during the titration procedure of YQFM and YS, [ΔH] > T [ΔS] , that was to say the reaction was enthalpy-driving. And the reactive profile indicated that a great deal of heat gave out during the procedure. Obviously, chemical reactions happened and the internal component changed. On the other side, the reaction of YQFM combined with 5% GS was entropy-driving, because [ΔH] < T [ΔS]. The reactive profile showed there was only a little heat released. So non-chemical reactions happened and the major ingredients did not change. ITC could be applied to the evaluation on compatibility of other kinds of Chinese and western medicinal injection combination.
Calorimetry
;
Drug Interactions
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Entropy
;
Epinephrine
;
chemistry
;
pharmacology
;
Glucose
;
chemistry
;
pharmacology
;
Injections
;
Thermodynamics
8.Sesquiterpenes and polyphenols with glucose-uptake stimulatory and antioxidant activities from the medicinal mushroom Sanghuangporus sanghuang.
Jin-Jin ZHANG ; Bao-Song CHEN ; Huan-Qin DAI ; Jin-Wei REN ; Li-Wei ZHOU ; Sheng-Hua WU ; Hong-Wei LIU
Chinese Journal of Natural Medicines (English Ed.) 2021;19(9):693-699
A chemical investigation on the fermentation products of Sanghuangporus sanghuang led to the isolation and identification of fourteen secondary metabolites (1-14) including eight sesquiterpenoids (1-8) and six polyphenols (9-14). Compounds 1-3 were sesquiterpenes with new structures which were elucidated based on NMR spectroscopy, high resolution mass spectrometry (HRMS) and electronic circular dichroism (ECD) data. All the isolates were tested for their stimulation effects on glucose uptake in insulin-resistant HepG2 cells, and cellular antioxidant activity. Compounds 9-12 were subjected to molecular docking experiment to primarily evaluate their anti-coronavirus (SARS-CoV-2) activity. As a result, compounds 9-12 were found to increase the glucose uptake of insulin-resistant HepG2 cells by 18.1%, 62.7%, 33.7% and 21.4% at the dose of 50 μmol·L
Agaricales
;
Antioxidants/pharmacology*
;
Basidiomycota
;
COVID-19/drug therapy*
;
Glucose
;
Humans
;
Molecular Docking Simulation
;
Polyphenols/pharmacology*
;
SARS-CoV-2
;
Sesquiterpenes/pharmacology*
9.Effect of Anti-Oxidative of Ethyl Pyruvate and Taurine on the Red Blood Cell Storage at 4 ℃.
Shu-Qiang GAO ; Shu-Hui GAO ; Chen-Hui ZHU ; Xiao-Yan YUAN ; Li-Xia REN
Journal of Experimental Hematology 2022;30(3):890-896
OBJECTIVE:
To investigate the anti-oxidative effect of ethyl pyruvate (EP) and taurine (TAU) on the quality of red blood cells stored at 4±2 ℃, hemolysis, energy metabolism and lipid peroxidation of the red blood cells in the preservation solution were studied at different intervals.
METHODS:
At 4±2 ℃, the deleukocyte red blood cells were stored in the citrate-phosphate-dextrosesaline-adenine-1 (CPDA-1) preservation (control group), preservation solution with EP (EP-AS), and TAU (TAU-AS) for long-term preservation. The enzyme-linked immunoassay and automatic blood cell analyzer were used to detect hemolysis and erythrocyte parameters. Adenine nucleoside triphosphate (ATP), glycerol 2,3-diphosphate (2,3-DPG) and malondialdehyde (MDA) kits were used to test the ATP, 2,3-DPG and MDA concentration.
RESULTS:
During the preservation, the rate of red blood cell hemolysis in EP-AS and TAU-AS groups were significantly lower than that in CPDA-1 group (P<0.01). The MCV of EP-AS group was increased with the preservation time (r=0.71), while the MCV of the TAU-AS group was significantly lower than that in the other two groups (P<0.05). The concentration of ATP and MDA in EP-AS and TAU-AS groups were significantly higher than that in CPDA-1 group at the 14th day (P<0.01). The concentrations of 2,3-DPG in the EP-AS and TAU-AS groups were significantly higher than that in the CPDA-1 group from the 7th day (P<0.01).
CONCLUSION
EP and TAU can significantly reduce the red blood cell hemolysis rate, inhibit the lipid peroxidation level of red blood cells, and improve the energy metabolism of red blood cells during storage. The mechanism of EP and TAU may be related to their antioxidation and membrane protection effect, so as to improve the red blood cell quality and extend the preservation time.
2,3-Diphosphoglycerate/metabolism*
;
Adenine
;
Adenosine Triphosphate/metabolism*
;
Blood Preservation
;
Citrates/pharmacology*
;
Erythrocytes/metabolism*
;
Glucose/pharmacology*
;
Hemolysis
;
Humans
;
Pyruvates
;
Taurine/pharmacology*
10.Effects of low-level laser on the expression of interleukin-6, tumor necrosis factor‑α, osteoprotegerin, and receptor activator of nuclear factor-κB ligand in human periodontal ligament cells.
Meng TANG ; Zhan-Qin CUI ; Yangyang WANG ; Zengguo CHEN ; Wenjing LI ; Cuiping ZHANG
West China Journal of Stomatology 2023;41(5):521-532
OBJECTIVES:
This study aims to determine the effects of low-level laser (LLL) on the expression of interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor-κB ligand (RANKL) in human periodontal ligament cells (HPDLCs) stimulated by high glucose; and identify the molecular mechanism of LLL therapy in the regulation of periodontal inflammation and bone remodeling during orthodontic treatment in diabetic patients.
METHODS:
HPDLCs were cultured in vitro to simulate orthodontic after loading and irradiated with LLL therapy. The cultured cells were randomly divided into four groups: low glucose Dulbecco's modification of Eagle's medium (DMEM)+stress stimulation (group A), high glucose DMEM+stress stimulation (group B), hypoglycemic DMEM+LLL therapy+stress stimulation (group C), and hyperglycemic DMEM+LLL therapy+stress stimulation (group D). Groups C and D were further divided into C1 and D1 (energy density: 3.75 J/cm2) and C2 and D2 (energy density: 5.625 J/cm2). Cells in groups A, B, C, and D were irradiated by LLL before irradiation. At 0, 12, 24, 48, and 72 h, the supernatants of the cell cultures were extracted at regular intervals, and the protein expression levels of IL-6, TNF-α, OPG, and RANKL were detected by enzyme-linked immunosorbent assay.
RESULTS:
1) The levels of IL-6 and TNF-α secreted by HPDLCs increased gradually with time under static pressure stimulation. After 12 h, the levels of IL-6 and TNF-α secreted by HPDLCs in group A were significantly higher than those in groups B, C1, and C2 (P<0.05), which in group B were significantly higher than those in groups D1, and D2 (P<0.01). 2) The OPG protein concentration showed an upward trend before 24 h and a downward trend thereafter. The RANKL protein concentration increased, whereas the OPG/RANKL ratio decreased with time. Significant differen-ces in OPG, RANKL, and OPG/RANKL ratio were found among group A and groups B, C1, C2 as well as group B and groups D1, D2 (P<0.05).
CONCLUSIONS
1) In the high glucose+stress stimulation environment, the concentrations of IL-6 and TNF-α secreted by HPDLCs increased with time, the expression of OPG decreased, the expression of RANKL increased, and the ratio of OPG/RANKL decreased. As such, high glucose environment can promote bone resorption. After LLL therapy, the levels of IL-6 and TNF-α decreased, indicating that LLL therapy could antagonize the increase in the levels of inflammatory factors induced by high glucose environment and upregulate the expression of OPG in human HPDLCs, downregulation of RANKL expression in HPDLCs resulted in the upregulation of the ratio of OPG/RANKL and reversed the imbalance of bone metabolism induced by high glucose levels. 2) The decrease in inflammatory factors and the regulation of bone metabolism in HPDLCs were enhanced with increasing laser energy density within 3.75-5.625 J/cm2. Hence, the ability of LLL therapy to modulate bone remodeling increases with increasing dose.
Humans
;
Osteoprotegerin
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/pharmacology*
;
RANK Ligand/pharmacology*
;
Periodontal Ligament/metabolism*
;
Lasers
;
Glucose/pharmacology*