1.Outcomes of empirical versus precise lung segmentectomy guided by artificial intelligence: A retrospective cohort study
Jian CHEN ; Bicheng ZHAN ; Yong TANG ; Yongzhi LIU ; Genshui LI ; Jian LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(10):1422-1427
Objective To compare the clinical application of empirical thoracoscopic segmentectomy and precise segmentectomy planned by artificial intelligence software, and to provide some reference for clinical segmentectomy. Methods A retrospective analysis was performed on the patients who underwent thoracoscopic segmentectomy in our department from 2019 to 2022. The patients receiving empirical thoracoscopic segmentectomy from January 2019 to September 2021 were selected as a group A, and the patients receiving precise segmentectomy from October 2021 to December 2022 were selected as a group B. The number of preoperative Hookwire positioning needle, proportion of patients meeting oncology criteria, surgical time, intraoperative blood loss, postoperative chest drainage time, postoperative hospital stay, and number of patients converted to thoracotomy between the two groups were compared. Results A total of 322 patients were collected. There were 158 patients in the group A, including 56 males and 102 females with a mean age of 56.86±8.82 years, and 164 patients in the group B, including 55 males and 109 females with a mean age of 56.69±9.05 years. All patients successfully underwent thoracoscopic segmentectomy, and patients whose resection margin did not meet the oncology criteria were further treated with extended resection or even lobectomy. There was no perioperative death. The number of positioning needles used for segmentectomy in the group A was more than that in the group B [47 (29.7%) vs. 9 (5.5%), P<0.001]. There was no statistical difference in the number of positioning needles used for wedge resection between the two groups during the same period (P=0.572). In the group A, the nodule could not be found in the resection target segment in 3 patients, and the resection margin was insufficient in 10 patients. While in the group B, the nodule could not be found in 1 patient, and the resection margin was insufficient in 3 patients. There was a statistical difference between the two groups [13 (8.2%) vs. 4 (2.4%), P=0.020]. There was no statistical difference between the two groups in terms of surgical time, intraoperative blood loss, duration of postoperative thoracic drainage, postoperative hospital stay, or conversion to open chest surgery (P>0.05). Conclusion Preoperative surgical planning performed with the help of artificial intelligence software can effectively guide the completion of thoracoscopic anatomical segmentectomy. It can effectively ensure the resection margin of pulmonary nodules meeting the oncological requirements and significantly reduce the number of positioning needles of pulmonary nodules.
2.Thoracoscopic combined subsegmentectomy for 76 patients: A retrospective study in a single center
Bicheng ZHAN ; Jian LIU ; Jian CHEN ; Yongzhi LIU ; Genshui LI ; Kunliang GUO ; Xiao WANG ; Yanzheng XIONG ; Mingbo GU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2023;30(01):47-51
Objective To summarize the clinical experience of thoracoscopic combined subsegmentectomy (CSS). Methods The clinical data of 76 patients who underwent thoracoscopic CSS in Anqing Municipal Hospital from May 2018 to July 2022 were retrospectively analyzed, including 22 males and 54 females, aged 27.0-76.0 (54.3±10.5) years. All patients underwent preoperative three-dimensional computed tomography bronchography and angiography using dual source CT. The modified inflation-deflation technique or indocyanine green was used to identify the intersubsegmental border. Results A total of 86 pulmonary nodules were resected in 76 patients. One patient of left upper lobe S1+2c+S4a, 1 patient of right upper lobe S2b+S3a and 1 patient of right upper lobe S1b+S3b were further performed lobectomy due to insufficient margin. One patient of left upper lobe S1+2+S3a was further performed left upper division segmentectomy due to residual atelectasis. One patient of left upper lobe S1+2c+S3a was further performed left upper division segmentectomy due to B3b+c injury, and the rest completed planned surgeries successfully. The operative time was 90.0-350.0 (174.9±53.2) min. The operative hemorrhage volume was 50.0 (20.0, 50.0) mL. The postoperative hospital stay time was 6.0 (5.0, 7.0) d. Postoperative complications included pulmonary infection in 9 patients, hemoptysis in 3 patients, persistent pulmonary leakage>3 d in 4 patients, pneumothorax in 1 patient, pleural effusion in 1 patient, and myocardial infarction in 1 patient. All of the patients were cured and discharged without perioperative death. Conclusion Thoracoscopic CSS is relatively complex. Preoperative planning under three-dimensional reconstruction and intraoperative fine operation are helpful for safe completion.