1.Aflatoxins in Food and Human Health Risk
Tserendolgor U ; Amarsanaa G ; Ganzorig D ; Unursaikhan S ; Gerelmaa L ; Odonchimeg M ; Narandelger B
Mongolian Medical Sciences 2015;173(3):44-49
Aflatoxins are the secondary metabolites of the fungi namely, Aspergillus flavus and A. parasiticus. They can colonize and contaminate grain before harvest or during storage. There are about twenty related secondary forms of aflatoxins, and subtypes B₁, B₂, G₁, G₂. These aflatoxins frequently contaminate the foods and feeds (Yu J et al, 2000, Imanaka BT et al, 2007). Aflatoxin B1, the most toxic, is a potent hepatocarcinogenic and genotoxigenic metabolites that have been classified as group I carcinogens by International Agency of Research on Cancer (International Agency for Research on cancer, 1993). Aflatoxin M1 is found in milk of lactating cows that have consumed feeds contaminated with aflatoxin B₁. Aflatoxin M₁ was originally classified as a Group 2B human carcinogen in 1993, but subsequent evidences of its cytotoxic, genotoxic and carcinogenic effects led to a new categorization of aflaoxin M1 as Group I (International Agency for Research on cancer, 2002). Aflatoxins can affect a wide range of commodities, including crops, cereals, oilseeds, spices, tree nuts, milk, meat, and dried fruit (Wilson DM et al, 1994, Bao L et al, 2010). Mongolia has been imported foods about 60 percent of food demands including wheat, flour, rice, milk, dairy products, peanuts and maize. This situation is required to study aflatoxin contamination in food in Mongolia. Epidemiological studies have found that dietary exposure to aflatoxin and chronic infection with hepatitis B, C virus are three major risk factors for HCC (Viviani et al. 1997; Hall et al. 2003). HCC as a result of chronic aflatoxin exposure has been well documented, presenting most often in persons with chronic hepatitis B virus (HBV) infection (Wild and Gong, 2010). The risk of liver cancer in individuals exposed to chronic HBV infection and aflatoxin is up to 30 times greater than the risk in individuals exposed to aflatoxin (Groopman et al., 2008). According to the WHO, the national liver cancer incidence rates was 54.1 per 100.000 population, the prevalence of HBV and HCV infection in 11.8%, 15.6% were respectively (J.Abarsanaa, 2012). This situation is a serous public health problem in Mongolia. Thus, we aimed to carry out the monitoring surveillance survey on the aflatoxin contamination level in some food.
2. RESULT OF KASAI OPERATION, CHILDREN LIVER TRANSPLANTATION IN MONGOLIA
Chuluunkhuu D ; Zorigtbaatar M ; Nurjanar R ; Ganbayr L ; Otgonsuren G ; Dashaa M ; Enkhzul P ; Khandmaa B ; Sergelen O ; Bat-Ireedui B ; Ganzorig B ; Pagaldulam M ; Saruul G ; Tsendjav A
Journal of Surgery 2016;20(2):56-61
Introduction: Biliary Atresia is a fibroobliterativedisorder of the intra andextrahepatic bile ducts in infancy, which isgoing progressively cholestatic liver disease.The failed Kasaiportoenterostomy requiresliver transplantation. The goal of this studyis to show the outcome of Kasai operation,recent improvement and correlation the datato overseas.Methods and Materials: This study wasconducted in the department of generalsurgery of National Center for Maternal andChild Health of Mongolia between 2010 and2016 on a total of 66 infancies with biliaryatresia.Results: Patient diagnosed with biliaryatresia, which performed Kasai operationwithin first 2 months the outcome is verygood early and late post-operation period.There were 3 patients with 10 year survival, 4patients with 5-10 year and 28 patients with5 year survival after Kasai operation. The mostcomport age for liver transplantation is 1 yearlater after Kasai operation in Mongolia. Livertransplantation programme is necessary forMongolian pediatric surgery, and we thoughtour team was assembled.Conclusion: The children with biliary atresiaperform the Kasai operation within 2 monthsthe outcome is very good. Children with biliaryatresia often experience long wait times fortransplant unless exception points are grantedto reflect severity of disease.In Mongolia livertransplantation done in 2 child.
3.Monitoring of environmental contamination by Echinococcus multilocularis in an urban fringe forest park in Hokkaido, Japan.
Jose Trinipil G LAGAPA ; Yuzaburo OKU ; Masami KANEKO ; Sumiya GANZORIG ; Takashi ONO ; Nariaki NONAKA ; Fumio KOBAYASHI ; Masao KAMIYA
Environmental Health and Preventive Medicine 2009;14(5):299-303
OBJECTIVESThe aim of this study was to determine the prevalence of Echinococcus multilocularis environmental contamination in an urban fringe-the Nopporo forest park of Sapporo city, Hokkaido, Japan. A secondary aim was to determine possible transmission risks areas by associating percentage occurrence of E. multilocularis-positive faeces with the different land-use classes.
METHODSWild fox faeces collected from the environment were examined by intravital methods, such as the taeniid egg sucrose floatation technique, E. multilocularis coproantigen enzyme-linked immunosorbent analysis and DNA test of taeniid eggs by PCR. Geospatial maps produced by the Global Positioning System and Landsat data were analysed using geographic information system software to determine the association between percentage occurrences of E. multilocularis-positive fox faeces and land-use classes.
RESULTSOur findings showed high prevalence rates in both E. multilocularis egg and coproantigen-positive faeces (16 and 49%, respectively) in the investigated urban fringe forest park. Data revealed that percentage occurrence of E. multilocularis-positive fox faeces was associated with land-use classes, such as forest and open field (P < 0.05).
CONCLUSIONSWe conclude that Nopporo forest park in the urban fringe of Sapporo city, Hokkaido is a reservoir with a high prevalence of zoonotic infective agents for alveolar echinococcosis. Our findings suggest that interface habitats between forests or woodlands and open fields are indispensable for continued maintenance of the life-cycle of E. multilocularis and, as such, constitute high risk areas for echinococcosis transmission.
4.Distribution of tick-borne diseases at Bulgan province, Mongolia
Rolomjav L ; Battsetseg J ; Bolorchimeg B ; Otgonbayar B ; Urangerel B ; Ganzorig G ; Natsagdorj D ; Bayar Ts ; Altantogtokh D ; Uyanga B ; Burmaajav B
Mongolian Medical Sciences 2022;199(1):24-33
Background:
Tick-borne encephalitis is human viral infection involving the nervous system and transmitted by the bite of infected tick. The TBE Virus is distributed in different geographical areas by three widespread subtypes of the virus: The Far East, Europe, and Siberia. The Far East type has a mortality rate was 30-35%, the European type has a mortality rate of 2.2%, and the Siberian type has a mortality rate of 6-8% (A.G. Pletnev, 1998) [2].
In recent years, human cases of tick-borne infections have been reported in 19 European countries and four Asian countries (Mongolia, China, Japan, and South Korea) [3].
Human cases of tick-borne encephalitis, tick-borne rickettsiosis, and tick-borne borreliosis have been registered in Mongolia since 2005. Deaths have been reported year by year [5].
During 2005 to 2021, tick-borne rickettsiosis (71.6%), tick-borne encephalitis (17.3%) and tick-borne borreliosis (52.9%) were confirmed by epidemiological, clinical and laboratory tests at the NCZD.
Tick-borne encephalitis was registered in 63 soums of 15 provinces and 9 districts of the capital city, of which 90% were infected with tick bites in Selenge and Bulgan provinces. The average mortality rate is 4.9% (14), of which 28.6% in Bulgan province and 2.7% in Selenge province.
Tick-borne encephalitis is the leading cause of death in Bugat soum of Bulgan province and more infected men about 40 years of age [7].
Purpose :
Collect ticks from selected soums of the provinces, identify tick species, species composition, distribution, tick densities, pathogens of tick-borne diseases, conduct population surveys to assess the risk of tick-borne infections, and identify tick-borne infections.
Material and Method:
Ticks were collected by flag from birch trees in birch forests and meadows with biotope and overgrown berries, determined morphological analyze and molecular biological investigation for detecting tickborne pathogens.
Questionnaires were collected from selected soum residents according to a specially designed randomized epidemiological and clinical survey card, collected information and forms were submitted to soum hospitals with a history of tick bites (according to clinical criteria). Serological tests were performed to detect IgG-specific antibodies to the collected serum mites.
Result and conclusion
Collected 121 ticks (120 I. persulcatus and 1 D. nuttalli) and not wound egg, larvae, nymphs. By molecular biological investigation detected 3.5% of I.persulcatus from Khutag-Undur soum of Bulgan province, 3.5% of anaplasmosis, and 14.1% of I.persulcatus mites from Bugat soum. 1.5% borreliosis, 3.1% anaplasmosis.
Detected DNA of 100% tick-borne rickettsiosis from D.nutalli ticks and determined circulation of infection among tick in Bugat and Khutag-Undur soums of Bulgan province.
247 people were surveyed, 56 blood serum from cases. Detected Q fever, erysipelas, and anaplasmosis, tick-borne borreliosis 3 (5.4%), tick-borne rickettsiosis 26 (46.4%), Japanese encephalitis 3 (5.4%), tick-borne encephalitis tick-borne rickettsiosis 6 (13.0%), tick-borne rickettsiosis tick-borne borreliosis 1 (1.8%), tick’s rickettsiosis Japanese encephalitis 1 (1.8%), tick-borne encephalitis tick-borne borreliosis 1 (1.8%).
By investigation, vaccination (88%) and wearing long-sleeved shirts and pants (81%) were the most effective ways to prevent tick bites (81%) [15]. According to our research, the percent of population knowledge in Bulgan province was insufficient (40.9%) which there is a lack of information, training and advertisement among the population in the province.