1.Outcomes of retinopathy of prematurity screening at National Center For Maternal And Child Health
Tsengelmaa Ch ; Erdenetuya G ; Tsogzolmaa G ; Gantuya M ; Amgalan P ; Enkhtuya S ; Altantuya Ts ; Bayalag M
Innovation 2021;14(1-Ophthalmology):22-25
Purpose:
To investigate the outcomes of ROP screening of retinopathy of prematurity (ROP).
Methods:
This was a prospective of prematurity infants screened ROP from 2020 April 13th to
April 28th 2020 and from 2020 June 08 th to June 22th 2020 and prospective cohort study of
premature infants with treatment-requiring ROP who received intravitreal injections, laser surgery.
Demographic factors, diagnosis and clinical course were recorded. Indirect ophthalmoscopy
and Retinal imaging was performed using RetCam (Natus Medical, Pleasanton, CA) and
images were taken. Each eye was evaluated by the pediatric ophthalmologist and aimag’s
ophthalmologist for the presence or absence of ROP, zone of vascularization, stage, plus disease,
and aggressive posterior ROP (AP-ROP). The diagnosis and classification of ROP for this current
study were determined by examination using indirect ophthalmoscopy, and treatment plans
were determined according to the International Classification for ROP and the Early Treatment for
ROP Study (ET-ROP).2,13
Results:
A total of 90 premature infants with BW ≤ 2000g and/or GA ≤ 34 weeks were screened for
ROP during the study period. 8 (8.8%) of the 90 infants screened required treatment. The 8 infants
who received ROP treatment had a mean GA of 28.5 ± 1.7 weeks, mean BW of 1237.5 ± 125.42g,
mean PMA of 36 weeks and mean follow-up time of 2 months.
Conclusion
After treatment, resolution of ROP was noted in approximately 100 % of the patients
who had treatment-requiring ROP.
2.Indoor Particulate Matter Concentration in Households of Darkhan City
Nyamdorj J ; Bolor M ; Maralmaa E ; Yerkyebulan M ; Ser-Od Kh ; Myagmarchuluun S ; Shatar Sh ; Gantuya D ; Gregory C. Gray ; Junfeng Zhang ; Ulziimaa D ; Damdindorj B ; Khurelbaatar N ; Davaalkham D
Mongolian Journal of Health Sciences 2025;85(1):25-29
Background:
A 2018 study on the global burden of disease, accidents, and risk factors reported that 1.6 million peo
ple died in 2017 due to household air pollution. Poor indoor air quality has been highlighted as a contributing factor to
respiratory diseases, cardiovascular conditions, and exacerbation of asthma and allergies. A 2019 study estimated that
long-term exposure to fine particulate matter (PM2.5) with a diameter of 2.5 micrometers or less reduces average life
expectancy by 1.8 years, with more severe effects in highly polluted regions. Additionally, a study by Miller et al. (2007)
found that prolonged exposure to PM2.5 increases the risk of cardiovascular diseases, particularly among women. Direct
measurement devices are highly effective in determining indoor PM2.5 concentrations, identifying sources of pollution,
tracking pollutant dispersion, and monitoring temporal variations. Studies suggest that direct measurement is an accurate,
cost-effective method that provides detailed data suitable for local conditions.
Aim:
To investigate the indoor air quality of houses and apartments in Darkhan city during the winter season using the
Purple Air monitoring device.
Materials and Methods:
A cross-sectional study was conducted with a targeted sample of 128 households in Darkhan
city. The study examined factors such as stove type, type of coal used, annual and daily coal consumption, frequency of
heating, and chimney sealing conditions. To collect data, the Purple Air monitoring device was installed in each house
hold for a month, after which it was retrieved. During retrieval, participants completed a questionnaire. The questionnaire
consisted of 55 questions across 7 pages at the time of device installation and 25 questions across 3 pages at the time of
device retrieval. The collected data was analyzed using SPSS 25.0.
Results:
A total of 128 households in Darkhan city participated in the study. The average duration of residence in the
current home was 9.5 years, with no statistically significant variation. The distribution of housing types was as follows:
traditional Mongolian gers (40.6%), houses (39.1%), and apartments (20.3%). The 24-hour average PM2.5 concentration
was highest in gers (70.9 μg/m³), followed by houses (46.8 μg/m³) and apartments (22.8 μg/m³), with a statistically significant difference (p=0.0001). PM2.5 levels were most variable in gers, followed by houses and then apartments. House
holds using central heating (apartments) had an average 24-hour PM2.5 concentration of 22.8 μg/m³, whereas households
using stoves (gers and houses) had a significantly higher concentration of 59.4 μg/m³ (p=0.0001). However, there was
no statistically significant difference between traditional and improved stoves. Among study participants, 21.4% reported
that someone in their household smoked indoors. Additionally, 86.5% regularly burned incense, candles, or herbs, while
99.2% did not use an air purifier.
Conclusion
The indoor particulate matter concentration in houses and gers in Darkhan was 59.4μг/m3. Variations in
stove types, poor chimney sealing limited space, and frequent gaps and cracks contribute to increased spread of indoor
air pollutants.