1.Phenotypic expression of collagen type II and collagen type I gene in monolayer culture of human auricular chondrocytes.
A N Nur Adelina ; B S Aminuddin ; S Munirah ; K H Chua ; N H Fuzina ; L Saim ; B H I Ruszymah
The Medical journal of Malaysia 2004;59 Suppl F():188-9
Cartilage is regularly needed for reconstructive surgery. Basic research in tissue engineering is necessary to develop its full potential. We presented here the expression profile of type II collagen gene and type I collagen gene in human auricular monolayer culture expansion. Cultured chondrocytes documented a reduction in the expression level of collagen type II gene whilst collagen type I gene was gradually expressed through all the passages. This study demonstrated that human auricular chondrocytes lose its phenotypic expression during monolayer culture expansion. Further studies are required to enhance cartilage specific gene expression, collagen type II throughout the in vitro culture.
Collagen
;
Genes
;
Cultural
;
monolayer
;
Human
2.Quality evaluation analysis of bioengineered human skin.
Mazlyzam AL ; Aminuddin BS ; Lokman BS ; Isa MR ; Fuzina H ; Fauziah O ; Ruszymah BH
The Medical Journal of Malaysia 2004;59 Suppl B():39-40
Our objective is to determine the quality of tissue engineered human skin via immunostaining, RT-PCR and electron microscopy (SEM and TEM). Culture-expanded human keratinocytes and fibroblasts were used to construct bilayer tissue-engineered skin. The in vitro skin construct was cultured for 5 days and implanted on the dorsum of athymic mice for 30 days. Immunostaining of the in vivo skin construct appeared positive for monoclonal mouse anti-human cytokeratin, anti-human involucrin and anti-human collagen type I. RT-PCR analysis revealed loss of the expression for keratin type 1, 10 and 5 and re-expression of keratin type 14, the marker for basal keratinocytes cells in normal skin. SEM showed fibroblasts proliferating in the 5 days in vitro skin. TEM of the in vivo skin construct showed an active fibrocyte cell secreting dense collagen fibrils. We have successfully constructed bilayer tissue engineered human skin that has similar features to normal human skin.
Fibroblasts/*cytology
;
Keratinocytes/*cytology
;
Mice, Nude
;
Microscopy, Electron
;
Microscopy, Electron, Scanning
;
Quality Control
;
Regeneration/physiology
;
Skin/pathology
;
Skin Transplantation/pathology
;
Skin Transplantation/*standards
;
Tissue Engineering/*standards
3.Collagen fibers an important entity in skin tissues remodeling.
Norhayati MM ; Mazlyzam AL ; Asmah R ; Fuzina H ; Aminuddin BS ; Ruszymah BH ; Fauziah O
The Medical Journal of Malaysia 2004;59 Suppl B():184-185
Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) evaluation were carried out in the in vivo skin construct using fibrin as biomaterial. To investigate its progressive remodeling, nude mice were grafted and the Extracellular Matrix (ECM) components were studied at four and eight weeks post-grafting. It was discovered that by 4 weeks of remodeling the skin construct acquired its native structure.
Collagen/*physiology
;
Extracellular Matrix/pathology
;
Fibroblasts/pathology
;
Mice, Nude
;
Microscopy, Electron, Scanning
;
Microscopy, Electron, Transmission
;
Regeneration/*physiology
;
Skin/*pathology
;
*Skin Transplantation/pathology
;
*Tissue Engineering
4.Gene expression characteristic in human auricular cartilage tissue engineering.
I Farah Wahida ; B S Aminuddin ; S Munirah ; K H Chua ; N H Fuzina ; M R Isa ; L Saim ; B H I Ruszymah
The Medical journal of Malaysia 2004;59 Suppl F():190-1
This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.
Gene Expression
;
Collagen
;
Cartilage
;
Tissue Engineering
;
Auricular cartilage