1.Research progress in key technologies for the development of Dendrobium officinale: from a rare and endangered species to a 10-billion-RMB-level industry.
Jing-Jing LIU ; Qiao-Xian YU ; Dong-Hong CHEN ; Ling-Shang WU ; Jin-Ping SI
China Journal of Chinese Materia Medica 2025;50(13):3670-3678
Dendrobium officinale(DO) is a traditional Chinese medicinal and edible plant, while it is critically endangered worldwide. This article, primarily based on the original research findings of the author's team and available articles, provides a comprehensive overview of the factors contributing to the endangerment of DO and the key technologies for the conservation, efficient cultivation, and value-added utilization of this plant. The scarcity of wild populations, low seed-setting rates, lack of endosperm in seeds, and the need for symbiosis with endophytic fungi for seed germination under natural conditions are identified as the primary causes for the rarity and endangerment of DO. Artificial seed production and tissue culture are highlighted as key technologies for alleviating the endangered status. The physiological and ecological mechanisms underlying the adaptation of DO to epiphytic growth are explored, and it is proposed that breaking the coupling of high temperature and high humidity is essential for preventing southern blight, a devastating affliction of DO. The roles of endophytic fungi in promoting the growth, improving the quality, and enhancing the stress resistance of DO are discussed. Furthermore, the integration of variety breeding, environment selection, and co-culture with endophytic fungi is emphasized as a crucial approach for efficient cultivation. The value-added applications of DO in pharmaceuticals, health foods, food products, and daily chemicals-particularly in the food and daily chemical industries-are presented as key drivers for a 10-billion-RMB-level industry. This systematic review offers valuable insights for the further development, utilization, and industrialization of DO resources, as well as for the broader application of conservation strategies for other rare and endangered plant species.
Dendrobium/microbiology*
;
Endangered Species
;
Seeds/microbiology*
;
Fungi/physiology*
2.A rare case of pulmonary aspergilloma in an immunocompetent Filipino elderly woman who initially presented as otomycosis: A case report
Alfie F. Calingacion ; Maria Philina P. Villamor
Philippine Journal of Internal Medicine 2025;63(2):173-177
BACKGROUND
Otomycosis, or fungal infection of the ear, is most commonly caused by Aspergillus, particularly of the Aspergillus niger species. On the other hand, pulmonary aspergilloma is a late manifestation of chronic cavitary pulmonary aspergillosis. Development of invasive aspergillosis is a possibility in immunocompromised patient but very rarely seen in immunocompetent persons. There have been no published reports in patients who initially presented as otomycosis and later development of pulmonary aspergilloma.
CASE PRESENTATIONThis case report presents 53-year-old Filipino immunocompetent female who was initially presented with ear discharges with diagnosed with otomycosis. She underwent modified radical mastoidectomy of the right ear with tympanoplasty type II. The patient then developed right facial nerve palsy due to erosion of the facial nerve canal. She was discharged with a final diagnosis of chronic suppurative otitis media with cholesteatoma; however, patient was not started on any anti-fungal medications. After fourteen months, the patient presented with episodes of hemoptysis and dyspnea and eventually re-admitted. Diagnostic work up was done with chest CT scan and serum galactomannan antigen test. She was diagnosed to have pulmonary aspergilloma. Patient was then started on long term anti-fungal therapy, instead of invasive surgical procedure. Repeat chest CT scan after six months showed a decrease in the size of the fungal ball.
CONCLUSIONThis study illustrates the lung aspergilloma may happen with preceding history of invasive otic fungal infection even if there is no immunocompromised condition. It also emphasizes the importance of proper identification of infection etiology to ensure adequate control and prevent further opportunistic infection.
Human ; Fungi ; Female ; Middle Aged: 45-64 Yrs Old ; Aspergillus Infection ; Aspergillosis ; Otomycosis
3.Clinical profile and outcomes of central microbial keratitis in the Philippines
Ma. Dominga B. padilla ; Ruben Lim Bon siong ; George Michael N. Sosuan
Philippine Journal of Ophthalmology 2025;50(1):26-32
OBJECTIVE
Despite being a preventable and treatable condition, central microbial keratitis (CMK) and its complications remain to be a significant cause of vision loss in our country. This study presents the demographic profile, risk factors, etiologies, treatments, and outcomes of CMK in the Philippines.
METHODSThe study was a two-center, prospective, non-randomized clinical study involving the patients of the External Disease and Cornea Clinics of two tertiary eye referral centers in the Philippines. It was conducted as the Philippine leg of the Asia Cornea Society Infectious Keratitis Study (ASCIKS).1 Patients with a clinical diagnosis of CMK rendered by a cornea specialist, and who signed the consent form, were recruited into the study. They underwent uniform sample collection and culture techniques as described in the ACSIKS. All patients were followed-up for 6 months. Data collected included demographics, risk factors, culture results, management, and treatment outcomes. Descriptive statistics and frequency were used to analyze the data.
RESULTSA total of 348 patients diagnosed with CMK were included. Trauma (65.5%) among the middle-aged (42.9 ± 17.9 years) male population was the most significant risk factor for development of CMK, followed by contact lens wear (12.9%), prior ocular surgery (6.0%), and ocular surface diseases (3.4%). Bacterial keratitis (53.2%) was still the most common etiology of CMK, followed by fungal keratitis (27.0%), Acanthamoeba keratitis (5.7%), and viral keratitis (2.0%). Aspergillus species (18.3%) were the most common microbial isolates. Pseudomonas species (13.9%) were the most common bacterial isolates. The median time from onset of symptoms to consultation with the study centers was 2 weeks. Medical treatment was enough to treat the infection in 34.8% of cases. Surgical intervention was necessitated in 22.6% with evisceration/enucleation done in 1 out of 3 patients who had surgery.
CONCLUSIONBacterial infection remains the most common cause of CMK in the Philippines, followed by fungal infection. Significant risk factors include trauma and contact lens wear. Aspergillus species and Pseudomonas species were the most common fungal and bacterial isolates, respectively. Despite medical treatment, almost a quarter of the cases still required surgical intervention.
Human ; Fungi ; Bacteria ; Philippines ; Vision, Ocular ; Keratitis
4.Characteristics, microbial composition, and mycotoxin profile of fermented traditional Chinese medicines.
Hui-Ru ZHANG ; Meng-Yue GUO ; Jian-Xin LYU ; Wan-Xuan ZHU ; Chuang WANG ; Xin-Xin KANG ; Jiao-Yang LUO ; Mei-Hua YANG
China Journal of Chinese Materia Medica 2025;50(1):48-57
Fermented traditional Chinese medicine(TCM) has a long history of medicinal use, such as Sojae Semen Praeparatum, Arisaema Cum Bile, Pinelliae Rhizoma Fermentata, red yeast rice, and Jianqu. Fermentation technology was recorded in the earliest TCM work, Shen Nong's Classic of the Materia Medica. Microorganisms are essential components of the fermentation process. However, the contamination of fermented TCM by toxigenic fungi and mycotoxins due to unstandardized fermentation processes seriously affects the quality of TCM and poses a threat to the life and health of consumers. In this paper, the characteristics, microbial composition, and mycotoxin profile of fermented TCM are systematically summarized to provide a theoretical basis for its quality and safety control.
Fermentation
;
Mycotoxins/analysis*
;
Drugs, Chinese Herbal/analysis*
;
Fungi/classification*
;
Bacteria/genetics*
;
Drug Contamination
;
Medicine, Chinese Traditional
5.Recent progress in ergothioneine of edible fungi.
Linlei YANG ; Zhenhui SHEN ; Xiangying LUO ; Rongping LI ; Rongchun LI
Chinese Journal of Biotechnology 2025;41(2):574-587
Ergothioneine is a natural antioxidant known for its potent anti-inflammatory and antioxidative properties. It has been applied in various sectors such as food, cosmetics, and pharmaceuticals. Edible fungi, both wild and cultivated, stand as the primary natural sources capable of synthesizing ergothioneine. This paper reviews the research progress in the content, physiological functions, extraction and detection methods, synthetic genes and pathways, mycelium fermentation, and engineering strain construction for ergothioneine production. The aim is to provide a comprehensive reference for advancing the research and industrial development related to ergothioneine in edible fungi.
Ergothioneine/isolation & purification*
;
Fungi/genetics*
;
Antioxidants/metabolism*
;
Fermentation
6.Research progress in the fungal bioluminescence pathway.
Lei LÜ ; Ke CHENG ; Zhitao XU ; Shijie AN ; Dang XU ; Hao DU
Chinese Journal of Biotechnology 2025;41(7):2545-2558
The fungal bioluminescence pathway (FBP) catalyzes the oxidation of endogenous caffeic acid to produce green bioluminescence through an enzymatic cascade. Genetic engineering of FBP into plants creates autoluminescent specimens that circumvent the substrate limitations of conventional reporter systems. These transgenic plants serve dual functions as aesthetic displays and versatile biosensing platforms, enabling applications in real-time gene expression monitoring, continuous environmental surveillance, and non-invasive bioimaging, offering novel opportunities for horticultural production, environmental conservation, and bioengineering applications. This review synthesizes current advances in plant FBP engineering and explores how machine learning approaches can optimize autoluminescent phenotypes, thereby accelerating innovation in agricultural biotechnology, environmental sensing, and synthetic biology applications.
Fungi/genetics*
;
Plants, Genetically Modified/metabolism*
;
Genetic Engineering
;
Biosensing Techniques
;
Luminescent Measurements
;
Caffeic Acids/metabolism*
;
Luminescence
7.Advances in the application of genome editing technologies in plant pathogenic fungi.
Chinese Journal of Biotechnology 2025;41(10):3683-3700
Filamentous fungi represent an important group of eukaryotic microorganisms with diverse ecological functions and ubiquitous distribution in various ecosystems. Among them, many species are closely associated with agriculture, functioning as major plant pathogens that cause yield losses and produce mycotoxins to compromise both the quality and safety of agricultural products. In recent years, the CRISPR/Cas system has emerged as a powerful and programmable genome editing tool, and it has been extensively applied to the genetic study of plant pathogenic fungi. This technology has greatly facilitated the investigation of pathogenic mechanisms, mycotoxin biosynthetic pathways and key gene functions, antifungal resistance, and rapid pathogen detection. This review summarizes the development of CRISPR/Cas systems and the key strategies for their application in plant pathogenic fungi and makes an outlook on the practical deployment. With the continuous advancement of gene editing technologies, emerging fungal-adapted editing systems hold great promise for advancing functional genomics and enabling innovations in disease-resistant breeding and sustainable crop protection.
Gene Editing/methods*
;
Fungi/pathogenicity*
;
CRISPR-Cas Systems/genetics*
;
Plant Diseases/microbiology*
;
Plants/microbiology*
;
Genome, Fungal/genetics*
8.Soil carbon and nitrogen dynamics affect bacterial and fungal communities and their interactions: a review.
Xinyuan LIU ; Yue LI ; Ziyan WEI ; Zhujun WANG
Chinese Journal of Biotechnology 2025;41(10):3701-3718
The escalating pressure from global population growth, climate change, and resource consumption is intensifying the burden on traditional agricultural production. Against this backdrop, soil degradation and pollution present increasingly severe challenges, creating a vicious cycle with rising food demands. Maintaining soil health and its ecosystem services has thus become a critical prerequisite for achieving sustainable agriculture in the future. This review explores the impacts of soil carbon (C) and nitrogen (N) dynamics on soil microbial communities and their interactions. Soil C and N are key determinants of microbial diversity and community structure, intrinsically linked to soil C/N cycling, crop productivity, and ecological balance. Environmental factors such as nitrogen fertilizer application, organic matter amendment application, litter decomposition, elevated CO2 concentrations, and nitrogen deposition significantly influence soil C and N dynamics. Changes in soil C and N content regulate microbial community dynamics and the synergistic, competitive, and antagonistic interactions among microorganisms. Meanwhile, microbial communities actively respond to alterations in soil C and N availability. The resulting shifts in microbial communities and their interactions subsequently regulate soil C/N cycling and ecosystem stability, ultimately influencing ecosystem functions. By elucidating the mechanisms underlying soil carbon-nitrogen-microbial interactions, this review significantly advances our understanding of soil ecosystem responses and feedback mechanisms in the context of global change, while also providing crucial practical guidance for enhancing soil fertility and promoting sustainable agricultural development through microbial regulation.
Soil Microbiology
;
Nitrogen/metabolism*
;
Carbon/metabolism*
;
Soil/chemistry*
;
Bacteria/growth & development*
;
Fungi/metabolism*
;
Ecosystem
;
Fertilizers
;
Agriculture
9.Enzyme production mechanism of anaerobic fungus Orpinomyces sp. YF3 in yak rumen induced by different carbon source.
Xue'er DU ; Linlin ZHOU ; Fan ZHANG ; Yong LI ; Congcong ZHAO ; Lamei WANG ; Junhu YAO ; Yangchun CAO
Chinese Journal of Biotechnology 2023;39(12):4927-4938
In order to investigate the enzyme production mechanism of yak rumen-derived anaerobic fungus Orpinomyces sp. YF3 under the induction of different carbon sources, anaerobic culture tubes were used for in vitro fermentation. 8 g/L of glucose (Glu), filter paper (Flp) and avicel (Avi) were respectively added to 10 mL of basic culture medium as the sole carbon source. The activity of fiber-degrading enzyme and the concentration of volatile fatty acid in the fermentation liquid were detected, and the enzyme producing mechanism of Orpinomyces sp. YF3 was explored by transcriptomics. It was found that, in glucose-induced fermentation solution, the activities of carboxymethyl cellulase, microcrystalline cellulase, filter paper enzyme, xylanase and the proportion of acetate were significantly increased (P < 0.05), the proportion of propionate, butyrate, isobutyrate were significantly decreased (P < 0.05). The results of transcriptome analysis showed that there were 5 949 differentially expressed genes (DEGs) between the Glu group and the Flp group, 10 970 DEGs between the Glu group and the Avi group, and 6 057 DEGs between the Flp group and the Avi group. It was found that the DEGs associated with fiber degrading enzymes were significantly up-regulated in the Glu group. Gene ontology (GO) function enrichment analysis identified that DEGs were mainly associated with the xylan catabolic process, hemicellulose metabolic process, β-glucan metabolic process, cellulase activity, endo-1,4-β-xylanase activity, cell wall polysaccharide metabolic process, carbohydrate catabolic process, glucan catabolic process and carbohydrate metabolic process. Moreover, the differentially expressed pathways associated with fiber degrading enzymes enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were mainly starch and sucrose metabolic pathways and other glycan degradation pathways. In conclusion, Orpinomyces sp. YF3 with glucose as carbon source substrate significantly increased the activity of cellulose degrading enzyme and the proportion of acetate, decreased the proportion of propionate, butyrate and isobutyrate. Furthermore, the degradation ability and energy utilization efficiency of fungus in the presence of glucose were improved by means of regulating the expression of cellulose degrading enzyme gene and participating in starch and sucrose metabolism pathway, and other glycan degradation pathways, which provides a theoretical basis for the application of Orpinomyces sp. YF3 in practical production and facilitates the application of Orpinomyces sp. YF3 in the future.
Animals
;
Cattle
;
Neocallimastigales/metabolism*
;
Anaerobiosis
;
Rumen/microbiology*
;
Propionates/metabolism*
;
Isobutyrates/metabolism*
;
Cellulose/metabolism*
;
Fungi
;
Starch/metabolism*
;
Glucose/metabolism*
;
Acetates
;
Sucrose/metabolism*
;
Cellulases
;
Cellulase
10.Screening and promoting effect of grow-promoting fungi in rhizosphere of Angelica dahurica var. formosana.
Mei-Yan JIANG ; Ren-Lang LIU ; Yang ZHOU ; Si-Qin LIU ; Yun-Shu YANG ; Fei YAO ; Xuan DU ; Yin-Yin CHEN ; Dong-Ju FENG ; Dong-Bei XU ; Wei WU
China Journal of Chinese Materia Medica 2023;48(19):5172-5180
Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.
Fertilizers
;
Rhizosphere
;
Angelica/chemistry*
;
Fungi/genetics*
;
Phosphorus


Result Analysis
Print
Save
E-mail