1.Impact of Anticoagulation on Deep Vein Thrombosis Occurrence in Patients After Right Heart Catheterization
Xiaohui KUANG ; Xi ZHANG ; Xiaolong GAO ; Lilin WANG ; Liqun DING ; Jin ZHANG ; Hong XIANG ; Yating PENG ; Tian GAO ; Fugang MAO ; Jie FAN
Chinese Circulation Journal 2017;32(8):776-779
Objective: To explore deep vein thrombosis (DVT) occurrence in patients after right heart catheterization and the effect of anticoagulant therapy. Methods: A total of 171 consecutive patients with electrophysiological study (EPS) and/or radiofrequency catheter ablation (RFCA) in our hospital from 2015-01 to 2016-05 were enrolled. All patients had supra-ventricular tachycardia and completed a venous surgery, they were randomly divided into 2 groups: Anticoagulation group,n=87 and Non-anticoagulation group,n=84. Lower extremity vascular Doppler ultrasonography was performed at (24-48) h post-operation to compare the incidence of DVT between 2 groups. Results: There were 13/171 patients were excluded for not completing post-operative lower extremity vascular Doppler ultrasonography including 9 patients in Anticoagulation group and 4 in Non-anticoagulation group. 158 patients finished post-operative examination and follow-up study. Anticoagulation group had 7/78 (8.97%) patients suffered from DVT, Non-anticoagulation group had 41/80 (51.3%) patients suffered from DVT,P<0.001. Conclusion: The incidence of DVT was higher after right heart catheterization without anticoagulation; heparin treatment may reduce DVT occurrence in relevant patients.
2.Overexpression of NKx2.5 gene affects the anti apoptotic ability of mesenchymal stem cells and cardiac function after myocardial infarction
Fugang MAO ; Xinxin WU ; Xinhao CHEN ; Si LI ; Dan YAN ; Zhiyuan XIAO ; Jigang HE
Clinical Medicine of China 2024;40(3):191-196
Objective:To investigate the effects of overexpression of Nkx2.5 gene on the anti apoptotic ability of bone marrow mesenchymal stem cells (BMSCs) and cardiac function after myocardial infarction.Methods:A cell ischemia model was established by culturing cells under oxygen glucose deprivation/reoxygenat (OGD/R) conditions. The experiment was divided into four groups: bone marrow mesenchymal stem cells cultured under normal conditions (BMSC group), BMSC group cultured under glucose and oxygen deprivation (BMSC+OGD/R group), overexpressed empty vector BMSC group cultured under glucose and oxygen deprivation(BMSC NC+OGD/R group), and overexpressed Nkx2.5 BMSC group cultured under glucose and oxygen deprivation (BMSC Nkx2.5+OGD/R group). The apoptosis rate of BMSCs in each group was detected via flow cytometry, and BMSC protein was extracted. The expression of caspase-3 and pro-caspase-3, caspase-8 and pro-caspase-8, caspase-9, and cytochrome C protein and expression of Nkx2.5 in the BMSCs of each group were detected by Western blot to determine the anti-apoptotic pathway in vitro. The model of myocardial infarction in mice was established by ligating the left anterior descending branch of coronary artery. The experiment was divided into five groups: sham surgery group, myocardial infarction untreated group, myocardial infarction tail vein injection of BMSC group, myocardial infarction tail vein injection of BMSC empty body group, myocardial infarction tail vein injection of BMSC overexpression Nkx2.5 group. The changes of cardiac function in mice were evaluated by echocardiography. Normal distribution econometric data were compared between groups using convenient analysis, and pairwise comparisons were conducted using LSD-t test. Results:The apoptosis rate of the BMSC+OGD/R group (12.98±1.24)% was higher than that of the BMSC group (7.82±0.42)%, and the difference was statistically significant ( P<0.001). The apoptosis rate of the BMSC NKx2.5+OGD/R group (11.26±0.22)% was lower than that of the BMSC+OGD/R group (12.98±1.24)% and the BMSC NC+OGD/R group (13.14±0.70)%, with statistically significant differences ( P<0.05). Compared to BMSC group ((0.36±0.08), (1.13±0.04), (0.36±0.06), (1.12±0.13), (1.23±0.08), (0.60±0.05), (0.67±0.14)), BMSC+OGD/R group ((1.05±0.10), (0.62±0.04), (1.07±0.09), (0.57±0.07), (0.55±0.08), (1.25±0.09), (0.71±0.04)) and BMSC NC+OGD/R group ((1.16±0.16), (0.64±0.06), (1.19±0.16), (0.56±0.06), (0.50±0.06), (1.28±0.06), (0.73±0.04)), the expression of Caspase-3 (0.72±0.08) and pro-caspase-3(0.89±0.09), Caspase-8 (0.63±0.08) and pro-caspase-8(0.85±0.12), Caspase-9 (0.87±0.09), cytochrome C (0.91±0.10), and Nkx2.5 (1.54±0.16) in BMSC Nkx2.5+OGD/R group was statistically significant (all P<0.05). In vivo experiments showed that the heart ejection fraction (29.05±7.07)% of mice treated with BMSC Nkx2.5 after myocardial infarction was significantly improved compared to the BMSC group (16.57±2.09)% and BMSC NC group (18.08±3.27)% (all P<0.05). Conclusion:BMSC Nkx2.5 may enhance the anti-apoptosis ability of BMSCs and improve cardiac function after myocardial infarction by inhibiting the death receptor pathway and the mitochondrial signal pathway .