1.High performance liquid chromatography analysis of the active ingredients and evaluation of anti-caries potential of Thai propolis extracts
John Erick B. Quiniquini ; Waraporn Putalun ; Waranuch Pitiphat ; Nutthapong Kantrong ; Suttichai Krisanaprakornkit ; Pattama Chailertvanitkul
Acta Medica Philippina 2025;59(10):110-118
OBJECTIVE
This study aimed to determine and quantify the presence of the active components in Thai propolis extracts using high performance liquid chromatography (HPLC). Moreover, the anti-caries potential of Thai propolis extract and its active ingredients were tested.
METHODSFifty milligrams of Thai propolis were extracted using either 100%, 90%, 80%, or 70% ethanol and subsequently analyzed using HPLC with a mobile phase gradient system of 10-100% acetonitrile in 0.05% aqueous ortho-phosphoric acid, flow rate of 0.8 mL/min, and detection wavelength of 280 nm. Varying concentrations of Thai propolis extracts as well as four active ingredients were subjected to agar well diffusion test against the growth of Streptococcus mutans (S. mutans) or Lactobacillus caseii (L. caseii).
RESULTSThe concentrations of the four active ingredients: vicenin-2, vitexin, apigenin, and cinnamic acid, were significantly affected by ethanolic concentrations. The chromatographic peaks of all active ingredients from 70% and 80% ethanolic extracts appeared more defined, as compared to those which used higher concentrations of ethanol for extraction. Except for the absolute ethanolic extract, all of the examined propolis extracts, as well as its active ingredients inhibited both S. mutans and L. caseii.
CONCLUSIONThai propolis extracts contain vicenin-2, vitexin, apigenin, and cinnamic acid as part of its active ingredients. These were found to be significantly affected by the increase in ethanol during its extraction. The presence of these active ingredients might have contributed to the anti-caries potential of Thai propolis extracts.
Flavonoids ; Chromatography, High Pressure Liquid
2.Research progress in chemical constituents and pharmacological activities of Abelmoschi Corolla and prediction of its quality markers.
Shi-Han GUAN ; Chang LIU ; Xiao-Tong YAN ; Jin-Wei HAN ; Feng-Ting YIN ; Hui SUN ; Guang-Li YAN ; Ling KONG ; Ying HAN ; Xi-Jun WANG
China Journal of Chinese Materia Medica 2025;50(4):908-921
Abelmoschi Corolla, the dried corolla of Abelmoschus manihot, has anti-inflammatory, antioxidant, and anti-fibrosis activities. Its chemical constituents mainly include flavonoids, organic acids, steroids, and polysaccharides. This study reviewed the research progress in the chemical constituents and pharmacological activities of Abelmoschi Corolla in recent 20 years. According to the concept of quality marker(Q-marker), the Q-markers of Abelmoschi Corolla were predicted from plant phylogeny, chemical constituent specificity, traditional efficacy, chemical constituent measurability, and absorbed constituents. The primary Q-markers for Abelmoschi Corolla were anticipated to include quercetin-3'-O-β-D-glucopyranoside, gossypetin-8-O-β-D-glucuronide, isoquercetin, myricetin,quercetin, and hyperoside, with the aim of providing reference data for improving the quality evaluation system of Abelmoschi Corolla.
Abelmoschus/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Flowers/chemistry*
;
Humans
;
Animals
;
Quality Control
;
Flavonoids/chemistry*
3.Icariin promotes alcohol-inhibited osteogenic differentiation of MC3T3-1-E1 cells by regulating LAP autophagy.
Qi ZENG ; Yue-Ping CHEN ; Shi-Lei SONG ; Yu LAI ; Hua-Hua WU
China Journal of Chinese Materia Medica 2025;50(3):590-599
This study investigated the mechanism of autophagy in the differentiation processes of MC3T3-E1 cells under osteogenic induction(physiological) and alcohol(AL) intervention(pathological), as well as the mechanism by which icariin(ICA) affected osteogenic differentiation of MC3T3-E1 cells under the pathological condition of AL intervention. Osteogenic mineralized nodule staining confirmed that the cells could differentiate into osteoblasts. After determining the appropriate concentrations of AL and ICA using the CCK-8 assay, seven groups were set up in this study: complete medium(CM) group, osteogenic induction medium(OIM) group, OIM+0.25 mol·L~(-1) AL group, OIM+0.25 mol·L~(-1) AL+1×10~(-8) mol·L~(-1) ICA group, OIM+0.25 mol·L~(-1) AL+1×10~(-7) mol·L~(-1) ICA group, OIM+0.25 mol·L~(-1) AL+1×10~(-6) mol·L~(-1) ICA group, and OIM+0.25 mol·L~(-1) AL+1×10~(-5) mol·L~(-1) ICA group, with a culture period of 7 days. Alkaline phosphatase(ALP) staining was used to detect the relative ALP area. Western blot and RT-qPCR were employed to analyze the expression of osteogenesis-and autophagy-related proteins and mRNAs. Reactive oxygen species(ROS) staining was used to detect ROS levels, and apoptosis was assessed through mitochondrial membrane potential assays. The results showed that ICA increased the relative ALP area that had been reduced by AL intervention. AL down-regulated the expression levels of Wnt family member 1(Wnt1), along with the osteogenesis-related mRNAs Wnt1, β-catenin, Runt-related transcription factor 2(Runx2), osteoprotegerin(OPG), and ALP, thereby inhibiting osteogenic differentiation. ICA up-regulated the expression levels of the osteogenesis-related proteins and mRNAs that had been inhibited by AL, promoting osteogenic differentiation. AL inhibited typical autophagy, while ICA regulated Rubicon to suppress LC3-associated phagocytosis(LAP) and promote typical autophagy. ICA also reduced the ROS levels that were elevated by AL and decreased the apoptosis of osteoblasts induced by AL intervention. In conclusion, ICA can regulate Rubicon to inhibit LAP, promote typical autophagy, eliminate ROS, reduce apoptosis, and ultimately enhance the osteogenic differentiation of MC3T3-E1 cells under the pathological condition of AL intervention by modulating the Wnt/β-catenin signaling pathway.
Autophagy/drug effects*
;
Animals
;
Osteogenesis/drug effects*
;
Mice
;
Cell Differentiation/drug effects*
;
Osteoblasts/metabolism*
;
Ethanol/pharmacology*
;
Flavonoids/pharmacology*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
4.Mechanism of icariin in promoting osteogenic differentiation of BMSCs and improving bone metabolism disorders through caveolin-1/Hippo signaling pathway.
Yi-Dan HAN ; Hai-Feng ZHANG ; Yun-Teng XU ; Yu-Huan ZHONG ; Xiao-Ning WANG ; Yun YU ; Yuan-Li YAN ; Shan-Shan WANG ; Xi-Hai LI
China Journal of Chinese Materia Medica 2025;50(3):600-608
Guided by the theory of "the kidney storing essence, governing the bones, and producing marrow", this study explored the mechanism of icariin(ICA) in regulating the osteogenic differentiation of rat bone mesenchymal stem cells(BMSCs) through caveolin-1(Cav1) via in vitro and in vivo experiments, aiming to provide a theoretical basis for the prevention and treatment of postmenopausal osteoporosis with traditional Chinese medicine(TCM). Primary cells were obtained from 4-week-old female SD rats using the whole bone marrow adherent method. Flow cytometry was used to detect the expression of surface markers CD29, CD90, CD11b, and CD45. The potential for osteogenic and adipogenic differentiation was assessed. The effect of ICA on cell viability was determined using the CCK-8 assay, and the impact of ICA on the formation of mineralized nodules was verified by alizarin red staining. A stable Cav1-silenced cell line was constructed using lentivirus. The effect of Cav1 silencing on osteogenic differentiation was observed via alizarin red staining. Western blot analysis was conducted to detect the expression of Cav1, Hippo/TAZ, and osteogenic markers such as Runt-related transcription factor 2(RUNX2) and alkaline phosphatase(ALP). The results showed that primary cells were successfully obtained using the whole bone marrow adherent method, positively expressing surface markers of rat BMSCs and possessing the potential for both osteogenic and adipogenic differentiation. The CCK-8 assay and alizarin red staining results indicated that 1×10~(-7) mol·L~(-1) was the optimal concentration of ICA for intervention in this experiment(P<0.05). During osteogenic induction, ICA inhibited Cav1 expression(P<0.05) while promoting TAZ expression(P<0.05). Alizarin red staining demonstrated that Cav1 silencing significantly promoted the osteogenic differentiation of BMSCs. After ICA intervention, TAZ expression was activated, and the expression of osteogenic markers ALP and RUNX2 was increased. In conclusion, Cav1 silencing significantly promotes the osteogenic differentiation of BMSCs, and ICA promotes this differentiation by inhibiting Cav1 and regulating the Hippo/TAZ signaling pathway.
Animals
;
Mesenchymal Stem Cells/metabolism*
;
Caveolin 1/genetics*
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Cell Differentiation/drug effects*
;
Female
;
Signal Transduction/drug effects*
;
Flavonoids/administration & dosage*
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cells, Cultured
;
Humans
5.Chemical constituents of Sophorae Flavescentis Radix and its residue based on UPLC-Q-TOF-MS.
Qian-Wen LIU ; Rong-Qing ZHU ; Qian-Nan HU ; Xiang LI ; Guang YANG ; Zi-Dong QIU ; Zhi-Lai ZHAN ; Tie-Gui NAN ; Mei-Lan CHEN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2025;50(3):708-718
Sophorae Flavescentis Radix is one of the commonly used traditional Chinese medicine in China, and a large amount of pharmaceutical residue generated during its processing and production is discarded as waste, which not only wastes resources but also pollutes the environment. Therefore, elucidating the chemical composition of the residue of Sophorae Flavescentis Radix and the differences between the residue and Sophorae Flavescentis Radix itself is of great significance for the comprehensive utilization of the residue. This study, based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) technology combined with multivariate statistical methods, provides a thorough characterization, identification, and differential analysis of the overall components of Sophorae Flavescentis Radix and its residue. Firstly, 61 compounds in Sophorae Flavescentis Radix were rapidly identified based on their precise molecular weight, fragment ions, and compound abundance, using a self-constructed compound database. Among them, 41 compounds were found in the residue, mainly alkaloids and flavonoids. Secondly, through principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA), 15 key compounds differentiating Sophorae Flavescentis Radix from its residue were identified. These included highly polar alkaloids, such as oxymatrine and oxysophocarpine, which showed significantly reduced content in the residue, and less polar flavonoids, such as kurarinone and kuraridin, which were more abundant in the residue. In summary, this paper clarifies the overall composition, structure, and content differences between Sophorae Flavescentis Radix and its residue, suggesting that the residue of Sophorae Flavescentis Radix can be used as a raw material for the extraction of its high-activity components, with promising potential for development and application in cosmetics and daily care. This research provides a scientific basis for the future comprehensive utilization of Sophorae Flavescentis Radix and its residue.
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Mass Spectrometry/methods*
;
Sophora/chemistry*
;
Flavonoids/chemistry*
;
Alkaloids/chemistry*
6.Pharmacokinetics of 7 characteristic components from active fraction of Alpiniae Officinarum Rhizoma in rats with Helicobacter pylori gastritis based on HPLC-MS/MS.
Hao-Ran MA ; Jian-Ting ZHAN ; Xin LUO ; Wu-Yin-Xiao ZHENG ; Xiao-Chuan YE ; Dan LIU
China Journal of Chinese Materia Medica 2025;50(7):1949-1958
A high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) method was established for simultaneous determination of seven characteristic components from the active fraction of Alpiniae Officinarum Rhizoma in rat plasma, including galangin, kaempferol, kaempferide, pinocembrin, 1,7-diphenyl-4-en-3-heptanone, 5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-3-heptanone(DHPA), and 7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-4-en-3-heptanone(DPHB). The new developed HPLC-MS/MS method was applied to study the pharmacokinetics of the 7 characteristic components in rats with Helicobacter pylori gastritis. A Waters Sunfire C_(18) column(2.1 mm×150 mm, 3.5 μm) was used. The acetonitrile-aqueous solution(containing 0.1% formic acid) was adopted as the mobile phase for gradient elution. Seven components and internal standard(chlorogenic acid) were separated within 12 min. Mass spectrometric detection was performed in multiple reaction monitoring(MRM) mode using electrospray ionization(ESI) source with fast switching between positive and negative ions. The method was verified by specificity, linearity, precision, accuracy, recovery, matrix effect, and stability and met the requirements of pharmacokinetic study on the 7 components in rat plasma. Pharmacokinetic results showed that the average peak time(T_(max)) of the 7 components was 0.31-2.19 h, their elimination half-life(t_(1/2)) was 5.26-16.65 h, and the average residence time(MRT) was 6.29-31.03 h after the oral administration of the active fraction of Alpiniae Officinarum Rhizoma to rats with H. pylori gastritis. The plasma exposure levels of galangin and DHPA were higher than those of the other components. The concentration-time curves of four detected flavonoids showed obvious double peaks. This study elucidated the pharmacokinetic characteristics of 7 characteristic components from the active fraction of Alpiniae Officinarum Rhizoma in rats with H. pylori gastritis, providing a scientific basis for the identification of the pharmacodynamic substances of Alpiniae Officinarum Rhizoma for treatment of H. pylori gastritis and the clinical application of Alpiniae Officinarum Rhizoma in the prevention and treatment of H. pylori gastritis.
Animals
;
Rats
;
Chromatography, High Pressure Liquid/methods*
;
Tandem Mass Spectrometry/methods*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Helicobacter pylori/drug effects*
;
Alpinia/chemistry*
;
Rats, Sprague-Dawley
;
Gastritis/metabolism*
;
Helicobacter Infections/metabolism*
;
Flavonoids/blood*
;
Rhizome/chemistry*
;
Liquid Chromatography-Mass Spectrometry
7.Effects of total flavonoids of Dracocephalum moldavica on apoptosis of H9c2 cells induced by OGD/R injury and endoplasmic reticulum stress.
Tian WANG ; Di-Wei LIU ; Tong-Ye WANG ; Xing-Yu ZHANG ; Jian-Guo XING ; Rui-Fang ZHENG
China Journal of Chinese Materia Medica 2025;50(5):1321-1330
This study investigated the effects of total flavonoids of Dracocephalum moldavica(TFDM) on apoptosis in rat H9c2 cells induced by endoplasmic reticulum stress(ERS) established by oxygen-glucose deprivation and reoxygenation(OGD/R) injury and tunicamycin(TM), and explored the potential mechanisms. After successful modeling, the following groups were set in this experiment: control group, model(OGD/R or TM) group, and TFDM low-, medium-, and high-dose groups(12.5, 25, and 50 μg·mL~(-1)). The OGD/R injury model was constructed in vitro. Cell proliferation was assessed using the cell counting kit-8(CCK-8) method. The levels of lactate dehydrogenase(LDH) and creatine kinase MB isoenzyme(CKMB) in the cell supernatant were detected. Western blot was used to assess the expression of ERS-related proteins, including glucose regulatory protein 78(GRP78), C/EBP homologous protein(CHOP), activating transcription factor 6(ATF6), and apoptotic proteins B-cell lymphoma 2(Bcl-2) and Bcl-2-associated X protein(Bax). Apoptosis was detected using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) method. In the TM-induced ERS model, Western blot was used to measure the expression of ERS pathway-related proteins GRP78, CHOP, inositol-requiring enzyme 1(IRE1), X-box binding protein 1(XBP1), protein kinase RNA-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2α(eIF2α), ATF6, p-ATF6, and apoptotic proteins Bcl-2, Bax, cysteinyl aspartate specific proteinase-12(caspase-12), and cleaved caspase-12. Gene expression of GRP78, CHOP, PERK, and ATF6 was detected by real-time fluorescence quantitative PCR(RT-qPCR). Apoptosis was again detected using the TUNEL method. The results showed that in the OGD/R model, compared with the control group, the levels of LDH and CKMB in the cell supernatant were significantly increased in the OGD/R group. Compared with the OGD/R group, the levels of LDH and CKMB in the TFDM group were significantly reduced. Western blot results revealed that compared with the control group, the expression of ERS-related proteins and Bax in the OGD/R group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the OGD/R group, the expression of ERS-related proteins and Bax in the TFDM groups was significantly reduced, and the expression of Bcl-2 was significantly increased. TUNEL assay showed that apoptosis was significantly decreased after TFDM treatment. In the TM-induced ERS experiment, compared with the control group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TM group was significantly increased, while the expression of Bcl-2 was significantly decreased. Compared with the TM group, the expression of ERS-related genes, ERS-related proteins, and apoptotic proteins in the TFDM group was significantly reduced, and the expression of Bcl-2 was significantly increased. These results suggest that ERS exists in the OGD/R-injured H9c2 cell model, and TFDM can effectively inhibit ERS-induced apoptosis. The mechanism may be related to the downregulation of ERS pathway-related proteins and apoptotic proteins.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Apoptosis/drug effects*
;
Rats
;
Flavonoids/pharmacology*
;
Glucose/metabolism*
;
Cell Line
;
Lamiaceae/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Oxygen/metabolism*
;
Reperfusion Injury/physiopathology*
;
Myocytes, Cardiac/cytology*
8.Functional characterization of flavonoid glycosyltransferase AmGT90 in Astragalus membranaceus.
Guo-Qing PENG ; Bing-Yan XU ; Jian-Ping HUANG ; Zhi-Yin YU ; Sheng-Xiong HUANG
China Journal of Chinese Materia Medica 2025;50(6):1534-1543
Astragalus membranaceus(A. membranaceus), a traditional tonic, contains flavonoids as one of its main bioactive components and key indicators for quality standard detection. These compounds predominantly exist in glycosylated forms after glycosylation modification within the plant. The catalytic products of flavonoid glycosyltransferases in A. membranaceus have been reported to be mostly monoglycosides, and only AmUGT28 catalyzes luteolin to form diglycosides. In this study, we cloned a glycosyltransferase gene, AmGT90, from A. membranaceus, with an ORF length of 1 335 bp, encoding 444 amino acids, and the protein had a relative molecular mass of 50.5 kDa. Phylogenetic tree analysis indicated that AmGT90 belongs to the UGT74 family. In vitro enzymatic reaction showed that AmGT90 had broad substrate specificity and could catalyze the glycosylation of various flavonoids, including isoflavones, flavones, flavanones, and chalcones. AmGT90 not only catalyzed the formation of monoglycosides but also diglycosides. In addition, the mechanism of AmGT90 catalyzing the formation of diglycosides from luteolin was preliminarily explored. The experimental results showed that AmGT90 may preferentially recognize C4'-OH of luteolin and then recognize C7-OH to form diglycosides. This study reported a glycosyltransferase from A. membranaceus capable of converting flavonoids into monoglycosides and diglycosides. This finding not only enhances our understanding of the biosynthetic pathways of flavonoid glycosides in A. membranaceus but also introduces a new component for glycoside production through synthetic biology.
Glycosyltransferases/chemistry*
;
Flavonoids/chemistry*
;
Astragalus propinquus/classification*
;
Phylogeny
;
Glycosylation
;
Plant Proteins/chemistry*
;
Substrate Specificity
;
Cloning, Molecular
;
Amino Acid Sequence
9.Research progress on biosynthesis and metabolic regulation of flavonoids in Ginkgo biloba.
Yuan-Jia LI ; Jian-Feng GONG ; Bin LI ; Xu LU
China Journal of Chinese Materia Medica 2025;50(15):4201-4208
Ginkgo biloba, an ancient relict plant, holds a lengthy medicinal tradition in China. The leaves and seeds of this remarkable species contain flavonoids, a class of active compounds that offer a multitude of pharmacological advantages. The understanding of the synthesis process of these flavonoids can be deepened substantially by elucidating their biosynthetic pathway and metabolic regulation mechanisms. This can thereby provide a foundation for achieving precise regulation of flavonoid biosynthesis, which is of great significance for improving the production efficiency and quality of flavonoids in G. biloba. This review comprehensively summarizes research advancements in metabolomics, genomics, and transcriptomics of flavonoids in G. biloba, aiming to establish a thorough academic framework. It examines key enzymes in the biosynthetic pathway of flavonoids in G. biloba and their functions, highlighting their crucial roles in flavonoid production. Additionally, it outlines transcriptional regulation mechanisms associated with flavonoid in G. biloba biosynthesis, focusing on transcription factors responsive to environmental cues and their regulatory networks that modulate flavonoid gene expression. These insights offer a theoretical foundation for precise control of G. biloba flavonoid production. By amalgamating these diverse research findings, this review aims to establish a robust theoretical groundwork for future studies on biosynthesis and efficient utilization of flavonoids in G. biloba.
Ginkgo biloba/chemistry*
;
Flavonoids/biosynthesis*
;
Gene Expression Regulation, Plant
;
Plant Proteins/genetics*
;
Biosynthetic Pathways
10.Preparation of baicalin-berberine complex nanocrystal enteric microspheres and pharmacodynamic evaluation of ulcerative colitis treatment in rats.
Xiao-Chao HUANG ; Yi-Wen HU ; Peng-Yu SHEN ; Rui-Hong JIAN ; Dong-Li QI ; Zhi-Dong LIU ; Jia-Xin PI
China Journal of Chinese Materia Medica 2025;50(15):4263-4274
To enhance the therapeutic efficacy of the baicalin-berberine complex(BA-BBR) in the treatment of ulcerative colitis(UC), BA-BBR nanocrystal microspheres(BA-BBR NC MS) were prepared using the dropping method. The microspheres were characterized in terms of morphology, particle size, differential scanning calorimetry(DSC), and powder X-ray diffraction(XRD). The release profiles of BA and BBR from the microspheres were measured, and the drug release mechanism was investigated. A rat model of UC was induced by 5% dextran sodium sulfate(DSS) and treated continuously for 7 days to evaluate the therapeutic effects of different formulations. The results showed that the prepared BA-BBR MS and BA-BBR NC MS were uniform gel spheres with particle sizes of(1.77±0.16) mm and(1.67±0.08) mm, respectively. After drying, the gels collapsed inward and exhibited a rough surface. During the preparation process, the BA-BBR nanocrystals(BA-BBR NC) were uniformly encapsulated within the microspheres. The release profiles of the microspheres followed a first-order kinetic model, and the 12-hour cumulative release of BA and BBR from BA-BBR NC MS was higher than that from BA-BBR MS. Compared with BA-BBR, BA-BBR NC, and BA-BBR MS, BA-BBR NC MS further alleviated UC symptoms in rats, most significantly reducing the levels of TNF-α, IL-1β, IL-6, and MPO, while increasing the level of IL-4 in colon tissues. These results indicate that BA-BBR NC MS, based on a "nano-in-micro" design, can deliver BA-BBR to the intestine and exert significant therapeutic effects in a UC rat model, suggesting it as a promising new strategy for the treatment of UC.
Animals
;
Colitis, Ulcerative/metabolism*
;
Rats
;
Nanoparticles/chemistry*
;
Microspheres
;
Male
;
Berberine/administration & dosage*
;
Flavonoids/administration & dosage*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Particle Size
;
Tumor Necrosis Factor-alpha/immunology*
;
Drug Liberation
;
Drug Compounding


Result Analysis
Print
Save
E-mail