1.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds
2.Influence of Fe₃O₄Magnetic Nanoparticles Combined with As2O3 and Adriamycin on Raji Cell Apoptosis and Autophagy.
Chun-Ling WANG ; Xiao-Hui CAI ; Li-Juan ZHANG ; Zheng-Mei HE ; Fei SHENG ; Jian CHENG ; Yu ZHANG ; Bao-An CHEN
Journal of Experimental Hematology 2015;23(5):1318-1324
OBJECTIVETo explore the effect of magnetic iron nanoparticles ( Fe₃O₄- MNP) in combination with arsenic trioxide and adriamycin on apoptosis and autophagy of Raji cells, a non-Hodgkin's lymphoma (NHL) cell line.
METHODSThe growth inhibition rate of Raji cells was analyzed by MTT assay, the cells apoptosis and intracellular concentration of ADM were determined by flow cytometry (FCM), the expression levels of apoptosis-related proteins such as BCL-2, NFκB, Survivin, BAX, P53, and Caspase-3, and related to autophagy-proteins, such as LC3, Beclin-1, and P62/SQSTM1 were detected by Western blot.
RESULTSThe growth inhibition of Raji cells in the group of ADM + As₂O₃were higher than that in the group of ADM or As₂O₃alone, however, lower than that in the group of Fe₃O₄- MNP combined with ADM and As₂O₃(ADM+As₂O₃+ MNP) (P < 0.05). The apoptotic rate and accumulation of intracellular ADM in the group of Fe₃O₄- MNP combined with ADM and As₂O₃were significantly higher than those in control, ADM, As₂O₃, and ADM plus As₂O₃groups (P < 0.05). The upregulation of BAX, P53 and Caspase-3 expression and the down regulation of BCL-2, NFκB, and Survivin expression at protein level were more remarkable in the group of ADM+As₂O₃ + MNP, compared with the other groups (P < 0.05). Moreover, the expressions of LC3 and Beclin-1 proteins in the group of ADM+As₂O₃+ MNP were higher, while the expression of P62/SQSTM1 was lower than that in other groups (P < 0.05).
CONCLUSIONThe Fe3O4 - MNP combined with ADM and As₂O₃can increase the antitumor efficacy on Raji cells by promoting apoptosis and inducing autophagy. It would be a promising strategy for malignant lymphoma therapy.
Apoptosis ; Arsenicals ; pharmacology ; Autophagy ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; Doxorubicin ; pharmacology ; Ferric Compounds ; pharmacology ; Humans ; Inhibitor of Apoptosis Proteins ; metabolism ; Nanoparticles ; Oncogene Proteins, Fusion ; metabolism ; Oxides ; pharmacology
3.2-deoxy-D-glucose modified supermagnetic iron oxide nanoparticles enhance the contrasting effect on MRI of human lung adenocarcinoma A549 tumor in nude mice.
Xiuhong SHAN ; Deqi YUAN ; Fei XIONG ; Ning GU ; Peng WANG
Chinese Journal of Oncology 2014;36(2):85-91
OBJECTIVETo evaluate the role of 2-deoxy-D-glucose (2-DG) modified supermagnetic iron oxide nanoparticles (SPIO) (γ-Fe2O3@DMSA-DG NPs) in tumor detection as a magnetic resonance imaging (MRI) contrast agent.
METHODSγ-Fe2O3@DMSA-DG NPs was prepared. The degree of A549 cells targeted absorption of γ-Fe2O3@DMSA-DG NPs was detected by Prussian blue staining, colorimetric assay, T2W and multi-echo sequence MRI. γ-Fe2O3@DMSA NPs was used as a control agent, and free D-glucose as a competitive inhibitor. Human lung adenocarcinoma A549 xenograft tumor was prepared in nude mice. Sterile aqueous suspension of γ-Fe2O3@DMSA NPs or γ-Fe2O3@DMSA-DG NPs was injected into the tail vein of nude mice. Before and 6, 12, 24, 48 h after injection, MRI imaging of the mice was performed. T2 signal intensity of the tumor, brain, liver and thigh skeletal muscles, and T2 values of the tumors were measured.
RESULTSThe average diameter of the particles was about 10 nm, and there were no significant differences between the diameters of γ-Fe2O3@DMSA NPs and γ- Fe2O3@DMSA-DG NPs. The IR spectra showed the C-N retractable vibration peak at γ-Fe2O3@DMSA-DG NPs surface, indicating that 2-DG was conjugated to the γ-Fe2O3@DMSA NPs. The Prussian blue staining, colorimetric assay, MRI T2 signal intensity and T2 values revealed that γ-Fe2O3@DMSA-DG NPs were significantly more absorbed by A549 cells at growth peak than γ-Fe2O3@DMSA NPs, and the absorption of γ-Fe2O3@DMSA-DG NP was inhibited by free D-glucose. The results of in vivo examination showed that before and at 6, 12, 24, 48 h after injection of γ-Fe2O3@DMSA-DG NPs, the mean T2 signal intensities of the tumors were (326.00 ± 16.26)s, (276.40 ± 5.13)s, (268.40 ± 30.58)s, (240.40 ± 25.93)s, (262.20 ± 30.04)s, respectively, and the T2 values of the tumors were (735.80 ± 20.93) ms, (645.80 ± 69.58) ms, (615.00 ± 124.61) ms, (570.60 ± 67.78) ms, and (537.80 ± 105.29) ms, respectively. However, before and at 6, 12, 24, 48 h after injection of γ-Fe2O3@DMSA NPs, the mean T2 signal intensities of the tumors were (335.60 ± 4.93)s, (290.80 ± 5.93)s, (273.40 ± 15.08)s, (327.40 ± 16.65)s, and (313.20 ± 20.45)s, respectively, and T2 values were (686.00 ± 21.44)ms, (617.80 ± 69.93)ms, (645.20 ± 85.89)ms, (669.40 ± 13.72)ms, and (608.80 ± 61.90)ms, respectively. The T2 signal intensity and T2 value of the tumors were not declined generally after injection. The liver T2 signal intensity was decreased after injection of both γ-Fe2O3@DMSA-DG NPs and γ-Fe2O3@DMSA NPs, and T2 signal intensity of the brain and muscle did not show significant changes.
CONCLUSIONSγ-Fe2O3@DMSA-DG NPs has an ability to target glucose receptors overexpressed in tumors, and may serve as a MRI contrast agent for tumor detection.
Adenocarcinoma ; diagnosis ; metabolism ; pathology ; Animals ; Cell Line, Tumor ; Colorimetry ; Contrast Media ; chemistry ; pharmacokinetics ; Deoxyglucose ; chemistry ; pharmacokinetics ; Ferric Compounds ; chemistry ; pharmacokinetics ; Humans ; Image Enhancement ; Lung Neoplasms ; diagnosis ; metabolism ; pathology ; Magnetic Resonance Imaging ; Magnetite Nanoparticles ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Neoplasm Transplantation ; Particle Size
4.Separation and evaluation of antioxidant constituents from Carthamus tinctorius.
Shi-Jun YUE ; Yu-Ping TANG ; Lin-Yan WANG ; Hao TANG ; Shu-Jiao LI ; Pei LIU ; Shu-Lan SU ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2014;39(17):3295-3300
Bio-active components from Carthamus tinctorius were separated on the basis of antioxidant capacities in vitro. The antioxidant capacity was investigated on the basis of the ability to scavenge DPPH radical, ABTS radical and reduce Fe3+ of different polar fractions. Furthermore, the chemical compounds were isolated from bio-active fraction, and were evaluated for the antioxidative effects. Five major components were isolated and identified from water extract as 6-hydroxykaempferol 3,6,7-tri-O-β-D-glucoside(1), 6-hydroxykaempferol 3-O-β-rutinoside-6-O-β-D-glucoside (2), 6-hydroxykaempferol 3-O-β-D-glucoside (3), hydroxysafflor yellow A (4) and anhydrosafflor yellow B (5). By evaluating and comparing the antioxidative effects of different fractions and obtained compounds, the results showed that water extract displayed significantly high antioxidative activities and 6-hydroxykaempferol glycosides and quinochalcone C-glycosides were found as main contribution for antioxidant property.
Antioxidants
;
isolation & purification
;
metabolism
;
pharmacology
;
Benzothiazoles
;
metabolism
;
Biphenyl Compounds
;
metabolism
;
Carthamus tinctorius
;
chemistry
;
Chalcone
;
analogs & derivatives
;
isolation & purification
;
metabolism
;
pharmacology
;
Ferric Compounds
;
metabolism
;
Free Radicals
;
metabolism
;
Kaempferols
;
isolation & purification
;
metabolism
;
pharmacology
;
Oxidation-Reduction
;
drug effects
;
Picrates
;
metabolism
;
Plant Extracts
;
isolation & purification
;
metabolism
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Quinones
;
isolation & purification
;
metabolism
;
pharmacology
;
Sulfonic Acids
;
metabolism
;
Water
;
chemistry
5.Study on preparation of matrine double-sensitive colon-specific pellets and in vitro release.
China Journal of Chinese Materia Medica 2014;39(9):1603-1606
OBJECTIVETo prepare matrine double-sensitive colon-specific pellets and study the factors affecting its quality and evaluateing the colon-specific effects of preparation.
METHODMatrine enzyme-sensitive pellets core were prepared by carboxymethyl konjac glucomannan as the main carrier material, and coated the core by acrylic resin II and III to prepare matrine double-sensitive colon-specific pellets. The prescription and technology of the matrine colon-specific pellets were studied by the single factor investigation, through the in vitro release test and coating rate determination.
RESULTThe optimized process conditions: FeCl3 concentration is 4.0 g x L(-1), chitosan concentration is 3.0 g x L(-1), carboxymethyl konjac glucomannan concentration is 20 g x L(-1), mixed gel solution pH value is 3. The release of matrine is less than 30% in the simulation of the upper gastrointestinal medium. The release of matrine is close to 100% in simulated full gastrointestinal medium, the coating weight is 7%.
CONCLUSIONThe prepared pellets have good colon positioning effect in vitro.
Acrylic Resins ; chemistry ; Administration, Oral ; Alkaloids ; administration & dosage ; chemistry ; pharmacokinetics ; Chitosan ; chemistry ; Chlorides ; chemistry ; Colon ; metabolism ; Delayed-Action Preparations ; administration & dosage ; chemistry ; pharmacokinetics ; Drug Compounding ; methods ; Drug Delivery Systems ; methods ; Ferric Compounds ; chemistry ; Humans ; Hydrogen-Ion Concentration ; Mannans ; chemistry ; Quinolizines ; administration & dosage ; chemistry ; pharmacokinetics ; Reproducibility of Results ; Tablets, Enteric-Coated ; Time Factors
6.Garden rue inhibits the arachidonic acid pathway, scavenges free radicals, and elevates FRAP: role in inflammation.
Manjir Sarma KATAKI ; Bibhuti B KAKOTI ; Biman BHUYAN ; Ananya RAJKUMARI ; Prakash RAJAK
Chinese Journal of Natural Medicines (English Ed.) 2014;12(3):172-179
AIM:
In the present study, the anti-inflammatory and antioxidant activities of the methanol extract of Ruta graveolens leaves (RG-M) were evaluated using various in vivo and in vitro models.
METHOD:
For anti-inflammatory activity, RG-M was administered by the oral route (p.o.) in a carrageenan-induced paw edema model, and by the intraperitoneal route (i.p.) in an exudative inflammation model. In vitro inhibition of cyclooxygenase and lipoxygenase enzymes was evaluated. In vitro antioxidant activity was also examined. Endogenous antioxidant status was further evaluated by ferric reducing ability of plasma model.
RESULTS:
RG-M showed maximum inhibition of carrageenan-induced edema (100 mg·kg⁻¹ - 33.36%; 200 mg·kg⁻¹ - 45.32% and 400 mg·kg⁻¹ - 56.28%). In the exudative inflammation model, a significant reduction in leukocyte migration (200 mg·kg⁻¹ - 54.75% and 400 mg·kg⁻¹ - 77.97%) and protein exudation (200 mg·kg⁻¹ - 31.14% and 400 mg·kg⁻¹ - 49.91%) were observed. RG-M also exhibited inhibition of COX-1 (IC50 182.27 μg·mL⁻¹) and COX-2 (IC50 190.16 μg·mL⁻¹) as well as 5-LOX (IC50 215.71 μg·mL⁻¹). Antioxidant activity was significant with improved endogenous antioxidant status.
CONCLUSION
The results demonstrated the anti-inflammatory and antioxidant activity of RG-M with potent inhibitory effects on the arachidonic acid pathways.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
therapeutic use
;
Antioxidants
;
pharmacology
;
therapeutic use
;
Arachidonic Acid
;
metabolism
;
Carrageenan
;
Cyclooxygenase 1
;
metabolism
;
Cyclooxygenase 2
;
metabolism
;
Cyclooxygenase Inhibitors
;
pharmacology
;
therapeutic use
;
Disease Models, Animal
;
Edema
;
drug therapy
;
Exudates and Transudates
;
Ferric Compounds
;
metabolism
;
Inflammation
;
drug therapy
;
metabolism
;
Leukocytes
;
metabolism
;
Lipoxygenase Inhibitors
;
pharmacology
;
therapeutic use
;
Lipoxygenases
;
metabolism
;
Male
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Plant Leaves
;
Rats, Wistar
;
Ruta
7.Distribution and accumulation of Cy5.5-labeled thermally cross-linked superparamagnetic iron oxide nanoparticles in the tissues of ICR mice.
Jin Joo HUE ; Hu Jang LEE ; Sangyong JON ; Sang Yoon NAM ; Young Won YUN ; Jong Soo KIM ; Beom Jun LEE
Journal of Veterinary Science 2013;14(4):473-479
Free Cy5.5 dye and Cy5.5-labeled thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) have been routinely used for in vivo optical imaging. However, there is little information about the distribution and accumulation of free Cy5.5 dye and Cy5.5-labeled TCL-SPION in the tissues of mice. Free Cy5.5 dye (0.1 mg/kg body weight) and Cy5.5-labeled TCL-SPION (15 mg/kg body weight) were intravenously injected into the tail vein of ICR mice. The biodistribution and accumulation of the TCL-SPION and Cy5.5 were observed by ex vivo optical imaging and fluorescence signal generation at various time points over 28 days. Cy5.5 dye fluorescence in various organs was rapidly eliminated from 0.5 to 24 h post-injection. Fluorescence intensity of Cy5.5 dye in the liver, lung, kidney, and stomach was fairly strong at the early time points within 1 day post-injection. Cy5.5-labeled TCL-SPION had the highest fluorescence density in the lung at 0.5 h post-injection and decreased rapidly over time. Fluorescence density in liver and spleen was maintained over 28 days. These results suggest that TCL-SPION can be useful as a carrier of therapeutic reagents to treat diseases by persisting for long periods of time in the body.
Animals
;
Carbocyanines/*pharmacology
;
Ferric Compounds/*pharmacology
;
Fluorescent Dyes/*pharmacology
;
Kinetics
;
Male
;
Mice
;
Mice, Inbred ICR
;
Nanoparticles/*metabolism
;
Time Factors
;
Tissue Distribution
8.Comparison of the targeting properties of 2-deoxy-D-glucose-conjugated nanoparticles to breast cancer MDA-MB-231 cells and breast fibroblasts cells.
Peng WANG ; Xiu-hong SHAN ; Fei XIONG ; Ning GU ; Hui QIAN ; Yu FAN ; Ya-fei WANG
Chinese Journal of Oncology 2013;35(8):566-571
OBJECTIVETo compare the differences in uptake of 2-deoxy-D-glucose (2-DG)-conjugated nanoparticles between breast carcinoma MDA-MB-231 cells with high metabolism and breast fibroblasts with normal metabolism, and investigate the feasibility of using the coated nanoparticles as a MRI-targeted contrast agent for highly metabolic carcinoma cells.
METHODSThe γ-Fe2O3@DMSA-DG was prepared. The glucose metabolism level of both cell lines was determined. The targeting efficacy of γ-Fe2O3@DMSA-DG and γ-Fe2O3@DMSA NPs to breast carcinoma MDA-MB-231 cells and breast fibroblasts at 10 min, 30 min, 1 h and 2 h was measured with Prussian blue staining and UV colorimetric assay. MRI was performed to visualize the changes of T2WI signal intensity.
RESULTSPrussian blue staining showed more intracellular blue granules in the MDA-MB-231 cells of γ-Fe2O3@DMSA-DG NPs group than that in the γ-Fe2O3@DMSA NPs group, and the γ-Fe2O3@DMSA-DG uptake was greatly competed by free D-glucose. As revealed by UV colorimetric assay, MDA-MB-231 cells also showed that the cellular iron amount of γ-Fe2O3@DMSA-DG group was significantly higher than that of the γ-Fe2O3@DMSA group and γ-Fe2O3@DMSA-DG + D-glucose group, statistically with a significant difference between them. MRI showed that the signal intensity of γ-Fe2O3@DMSA-DG group was decrease significantly, the T2 signal intensity was decreased by 10.5%, 37.5%, 72.9%, 92.0% for 10 min, 30 min, 1 h and 2 h, respectively. In contrast, the signal intensity did not show obvious decrease in the γ-Fe2O3@DMSA-DG group, the T2 signal intensity was decreased by 8.5%, 11.4%, 32.0%, 76.7% for 10 min, 30 min, 1 h and 2 h, respectively. However, HUM-CELL-0056 cells did not produce apparent difference for positive staining in the γ-Fe2O3@DMSA-DG group, γ-Fe2O3@DMSA group and γ-Fe2O3@DMSA-DG+D-glucose group, and the signal intensity also did not produce apparent difference.
CONCLUSIONSγ-Fe2O3@DMSA-DG has good targeting ability to highly metabolic breast carcinoma (MDA-MB-231) cells. It is feasible to serve as a specific MRI-targeted contrast agent for highly metabolic carcinoma cells, and deserves further studies in vivo.
Breast Neoplasms ; metabolism ; pathology ; Cell Line, Tumor ; Cells, Cultured ; Colorimetry ; methods ; Contrast Media ; pharmacokinetics ; Deoxyglucose ; chemistry ; pharmacokinetics ; Female ; Ferric Compounds ; chemistry ; pharmacokinetics ; Fibroblasts ; cytology ; metabolism ; Glucose ; metabolism ; Humans ; Iron ; metabolism ; Magnetic Resonance Imaging ; methods ; Nanoconjugates ; chemistry ; Particle Size ; Succimer ; chemistry ; pharmacokinetics
9.Epidermal growth factor receptor-targeted ultra-small superparamagnetic iron oxide particles for magnetic resonance molecular imaging of lung cancer cells in vitro.
Chun-Li CHEN ; Guang-Yuan HU ; Qi MEI ; Hong QIU ; Guo-Xian LONG ; Guo-Qing HU
Chinese Medical Journal 2012;125(13):2322-2328
BACKGROUNDMagnetic resonance (MR) molecular imaging can detect abnormalities associated with disease at the level of cell and molecule. The epidermal growth factor receptor (EGFR) plays an important role in the development of lung cancer. This study aimed to explore new MR molecular imaging targeting of the EGFR on lung cancer cells.
METHODSWe attached ultra-small superparamagnetic iron oxide (USPIO) particles to cetuximab (C225) anti-human IgG using the carbodiimide method. We made the molecular MR contrast agents C225-USPIO and IgG-USPIO, the latter as a control reagent, and determined concentrations according to the Fe content. Lung cancer A549 cells were cultured and immunocytochemistry (SP) was used to detect the expression of EGFR on cells. We detected the binding rate of C225-USPIO to A549 cells with immunofluorescence staining and flow cytometry. We cultured A549 cells with C225-USPIO at a Fe concentration of 50 µg/ml and assayed the binding of C225-USPIO after 1 hour with Prussian blue staining and transmission electron microscopy (TEM). We determined the effects on imaging of the contrast agent targeted to cells using a 4.7T MRI. We did scanning on the cells labeled with C225-USPIO, IgG-USPIO, and distilled water, respectively. The scanning sequences included axial T1WI, T2WI.
RESULTSImmunocytochemical detection of lung cancer A549 cells found them positive for EGFR expression. Immunofluorescence staining and flow cytometry after cultivation with different concentrations of C225-USPIO showed the binding rate higher than the control. Prussian blue staining and transmission electron microscopy revealed that in the C225-USPIO contrast agent group of cells the particle content of Fe in cytoplasmic vesicles or on surface was more than that in the control group. The 4.7T MR imaging (MRI) scan revealed the T2WI signal in the C225-USPIO group of cells decreased significantly more than in unlabeled cells, but there was no significant difference between the time gradients.
CONCLUSIONSWe successfully constructed the molecular imaging agent C225-USPIO targeting the EGFR of A549 lung cancer cells. The imaging agent showed good targeting effect and specificity, and reduced MRI T2 value significantly, thus such molecular contrast agents could provide a new way to measure EGFR levels.
Antibodies, Monoclonal ; chemistry ; Antibodies, Monoclonal, Humanized ; Cell Line, Tumor ; Cetuximab ; Contrast Media ; chemistry ; Dextrans ; chemistry ; Ferric Compounds ; chemistry ; Humans ; Immunohistochemistry ; Lung Neoplasms ; metabolism ; Magnetic Resonance Imaging ; methods ; Magnetite Nanoparticles ; chemistry ; Microscopy, Electron, Transmission ; Receptor, Epidermal Growth Factor ; metabolism
10.Connection of magnetic antisense probe with SK-Br-3 oncocyte mRNA nucleotide detected by high resolution atomic force microscope.
Shude TAN ; Yu OUYANG ; Xinyou LI ; Ming WEN ; Shaolin LI
Journal of Biomedical Engineering 2011;28(3):442-445
The present paper is aimed to detect superparamagnetic iron oxide labeled c-erbB2 oncogene antisense oligonucleotide probe (magnetic antisense probe) connected with SK-Br-3 oncocyte mRNA nucleotide by high resolution atomic force microscope (AFM). We transfected SK-Br-3 oncocyte with magnetic antisense probe, then observed the cells by AFM with high resolution and detected protein expression and magnetic resonance imagine (MRI). The high resolution AFM clearly showed the connection of the oligonucleotide remote end of magnetic antisense probe with the mRNA nucleotide of oncocyte. The expression of e-erbB2 protein in SK-Br3 cells were highly inhibited by using magnetic antisense probe. We then obtained the lowest signal to noise ratio (SNR) of SK-Br-3 oncocyte transfected with magnetic antisense probe by MRI (P<0.05). These experiments demonstrated that the high resolution AFM could be used to show the binding of magnetic antisense probe and SK-Br-3 mRNA of tumor cell nuclear.
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
DNA, Antisense
;
chemistry
;
genetics
;
Female
;
Ferric Compounds
;
chemistry
;
Genes, erbB-2
;
genetics
;
Humans
;
Magnetics
;
Microscopy, Atomic Force
;
methods
;
Molecular Probe Techniques
;
Nucleic Acid Probes
;
chemistry
;
genetics
;
Oligodeoxyribonucleotides
;
chemistry
;
genetics
;
Oxyphil Cells
;
ultrastructure
;
RNA, Messenger
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail