1.Effects of acupoint catgut embedding on gut microbiota and fecal short-chain fatty acids in Parkinson's disease patients with constipation.
Xiaomei ZHANG ; Jie JIANG ; Wenying LI ; Juping CHEN ; Yin HUANG ; Wei REN ; Yafang SONG ; Jianhua SUN
Chinese Acupuncture & Moxibustion 2025;45(11):1533-1540
OBJECTIVE:
To observe the effects of acupoint catgut embedding (ACE) on gut microbiota and fecal short-chain fatty acids (SCFAs) levels in patients with Parkinson's disease (PD) with constipation.
METHODS:
A total of 80 PD patients with constipation were randomly divided into an observation group and a control group, 40 cases in each group. Additionally, 40 healthy individuals were recruited as a healthy control group. The control group received conventional Western medical treatment for PD combined with polyethylene glycol (PEG), once daily for eight weeks. The observation group received additional ACE treatment at bilateral Tianshu (ST25), Zusanli (ST36), and Shangjuxu (ST37), once every two weeks for eight weeks. The healthy control group received no intervention. The spontaneous bowel movements (SBMs) per week and patient assessment of constipation quality of life (PAC-QOL) scores were assessed at baseline and after treatment in the two groups. Fecal samples were collected at the end of treatment for the observation and the control groups and at baseline for the healthy control group. Gut microbiota composition and diversity were analyzed using 16S rRNA method, and SCFA levels were measured using high-performance liquid chromatography (HPLC).
RESULTS:
Compared before treatment, the observation group showed a significant increase in SBMs (P<0.01), and PAC-QOL scores including physical discomfort, psychosocial discomfort, worry and concern, and total score were significantly reduced (P<0.01) after treatment; the control group also showed a reduction in PAC-QOL total score after treatment (P<0.01). After treatment, the observation group had significantly more SBMs (P<0.01), and lower PAC-QOL physical discomfort, psychosocial discomfort, worry and concern scores, and total score (P<0.01), and higher PAC-QOL satisfaction score (P<0.01) than the control group. Compared with the healthy control group, the control group showed decreased Chao1 and Ace indices (P<0.01). Compared with the healthy control group, the relative abundance of Prevotella and Roseburia was increased (P<0.05), while that of Enterobacter and Ruminococcus torques (six species in total) was decreased (P<0.05) in the control group. Compared with the control group, the observation group had increased relative abundance of Dialister, Parabacteroides, and Ruminococcus torques (P<0.05), and decreased relative abundance of Prevotella and Eubacterium ruminantium (P<0.05). Compared with the healthy control group, the control group had increased fecal SCFA levels (P<0.05); compared with the control group, the observation group had reduced fecal SCFA levels (P<0.05). Compared with the healthy control group, acetic acid, propionic acid, and butyric acid levels were elevated in the control group (P<0.05); compared with the control group, acetic acid, propionic acid, and butyric acid levels were decreased in the observation group (P<0.05).
CONCLUSION
ACE could increase spontaneous bowel movements and improve the quality of life in PD patients with constipation, which may be related to the regulation of gut microbiota composition and SCFA levels.
Humans
;
Constipation/metabolism*
;
Male
;
Gastrointestinal Microbiome
;
Acupuncture Points
;
Female
;
Middle Aged
;
Parkinson Disease/complications*
;
Aged
;
Fatty Acids, Volatile/metabolism*
;
Catgut
;
Feces/microbiology*
;
Acupuncture Therapy
;
Quality of Life
;
Adult
2.Effect and mechanism of Liujunzi Pills on gut microbiota of rats with spleen Qi deficiency syndrome.
Tao ZHANG ; Nian CHEN ; Qin-Yao JIA ; Xiao-Xia LEI ; Jie WANG ; Jia-Qing ZHAO ; Ying WEI ; Jing WEN
China Journal of Chinese Materia Medica 2025;50(15):4333-4341
This article aims to explore the effect and mechanism of Liujunzi Pills on the intestinal microbiota of rats with spleen Qi deficiency syndrome. The raw Rhei Radix et Rhizoma water extract(1 g·mL~(-1)) was used to prepare spleen Qi deficiency rat models. A total of 44 SD male rats were randomly divided into a control group, a model group, Liujunzi Pills groups at high(3.24 g·kg~(-1)), medium(1.62 g·kg~(-1)), low(0.81 g·kg~(-1)) doses, and Shenling Baizhu San(2.50 g·kg~(-1)) group. The drug effect was evaluated by observing the following aspects: spleen index, fecal water content, body weight, and intestinal propulsion index. Gut microbiota analysis and 16S rRNA gene sequencing were conducted on feces. Enzyme-linked immunosorbent assay(ELISA) and UV spectrophotometry were used to detect interleukin-1β(IL-1β) and adenosine triphosphate(ATP) levels in small intestine tissues. Hematoxylin-eosin staining and transmission electron microscopy were employed to observe changes in intestinal pathology and microstructure. The results show that, compared with the control group, fecal moisture content is significantly increased while spleen index, body weight, and intestinal propulsion index are significantly reduced in rats of the model group, indicating the successful establishment of the model. The above symptoms can be improved by both Shenling Baizhu San and Liujunzi Pills. Compared with the control group, in the model group, the gut microbiota abundance is changed with an unbalanced development: the abundance of beneficial bacteria within the Bacteroidetes phylum is reduced, accompanied by a significantly decreased Shannon index, and reduced signal levels of nicotinamide adenine dinucleotide phosphate(NADPH)-related enzymes relevant to mitochondria. However, Liujunzi Pills and Shenling Baizhu San can significantly improve the Bacteroidetes phylum abundance in gut microbiota, microbial diversity, and NADPH activity in the model group. Additionally, compared with the control group, the ATP level is decreased and the IL-1β level is increased in small intestinal tissues of the model group, with shorter small intestinal epithelial villi and decreased mitochondrial number. The above symptoms can be improved by Liujunzi Pills and Shenling Baizhu San. In conclusion, Liujunzi Pills can treat spleen Qi deficiency syndrome by enhancing mitochondrial function to regulate gut microbiota balance and diversity.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Qi
;
Spleen/metabolism*
;
Splenic Diseases/metabolism*
;
Humans
;
Interleukin-1beta/genetics*
;
Bacteria/drug effects*
;
Feces/microbiology*
;
Adenosine Triphosphate/metabolism*
3.Characteristics of Gut Microbiota Changes and Their Relationship with Infectious Complications During Induction Chemotherapy in AML Patients.
Quan-Lei ZHANG ; Li-Li DONG ; Lin-Lin ZHANG ; Yu-Juan WU ; Meng LI ; Jian BO ; Li-Li WANG ; Yu JING ; Li-Ping DOU ; Dai-Hong LIU ; Zhen-Yang GU ; Chun-Ji GAO
Journal of Experimental Hematology 2025;33(3):738-744
OBJECTIVE:
To investigate the characteristics of gut microbiota changes in patients with acute myeloid leukemia (AML) undergoing induction chemotherapy and to explore the relationship between infectious complications and gut microbiota.
METHODS:
Fecal samples were collected from 37 newly diagnosed AML patients at four time points: before induction chemotherapy, during chemotherapy, during the neutropenic phase, and during the recovery phase. Metagenomic sequencing was used to analyze the dynamic changes in gut microbiota. Correlation analyses were conducted to assess the relationship between changes in gut microbiota and the occurrence of infectious complications.
RESULTS:
During chemotherapy, the gut microbiota α-diversity (Shannon index) of AML patients exhibited significant fluctuations. Specifically, the diversity decreased significantly during induction chemotherapy, further declined during the neutropenic phase (P < 0.05, compared to baseline), and gradually recovered during the recovery phase, though not fully returning to baseline levels.The abundances of beneficial bacteria, such as Firmicutes and Bacteroidetes, gradually decreased during chemotherapy, whereas the abundances of opportunistic pathogens, including Enterococcus, Klebsiella, and Escherichia coli, progressively increased.Analysis of the dynamic changes in gut microbiota of seven patients with bloodstream infections revealed that the bloodstream infection pathogens could be detected in the gut microbiota of the corresponding patients, with their abundance gradually increasing during the course of infection. This finding suggests that bloodstream infections may be associated with opportunistic pathogens originating from the gut microbiota.Compared to non-infected patients, the baseline samples of infected patients showed a significantly lower relative abundance of Bacteroidetes (P < 0.05). Regression analysis indicated that Bacteroidetes abundance is an independent predictive factor for infectious complications (P < 0.05, OR =13.143).
CONCLUSION
During induction chemotherapy in AML patients, gut microbiota α-diversity fluctuates significantly, and the abundance of opportunistic pathogens increase, which may be associated with bloodstream infections. Patients with lower baseline Bacteroidetes abundance are more prone to infections, and its abundance can serve as an independent predictor of infectious complications.
Humans
;
Gastrointestinal Microbiome
;
Leukemia, Myeloid, Acute/microbiology*
;
Induction Chemotherapy
;
Feces/microbiology*
;
Male
;
Female
;
Middle Aged
4.Pediatric inflammatory bowel disease in mother‒child pairs: clinical risk factors and gut microbiota characteristics.
Cunzheng ZHANG ; Ruqiao DUAN ; Nini DAI ; Yuzhu CHEN ; Gaonan LI ; Xiao'ang LI ; Xiaolin JI ; Xuemei ZHONG ; Zailing LI ; Liping DUAN
Journal of Zhejiang University. Science. B 2025;26(10):995-1014
OBJECTIVES:
The risk factors and role of mother‒child gut microbiota in pediatric inflammatory bowel disease (PIBD) remain unclear. We aimed to explore the clinical risk factors associated with PIBD, analyze the characteristics of gut microbiota of children and their mothers, and examine the correlation of the microbial composition in mother‒child pairs.
METHODS:
We conducted a case-control study including children with PIBD and their mothers as the case group, as well as healthy children and their mothers as the control group. Questionnaires were used to collect information such as family illness history and maternal and early-life events. Fecal samples were collected from the children and mothers for microbiota 16S ribosomal RNA (rRNA) sequencing to analyze the composition and its potential association with PIBD.
RESULTS:
A total of 54 pairs of cases and 122 pairs of controls were recruited. A family history of autoimmune disease and antibiotic use during pregnancy were associated with an increased risk of PIBD, and a higher education level of the father was associated with a decreased risk of PIBD. Children with PIBD and mothers exhibited different gut microbiota compared to healthy children and mothers. Similarities were observed in the gut microbiota of mothers and children in the same groups. Some bacterial biomarkers of mothers discovered in this study had the power to predict PIBD in their offspring.
CONCLUSIONS
PIBD is influenced by maternal risk factors and has unique gut microbiota characteristics. The mother‒child gut microbiota is closely related, suggesting the transmission and influence of the gut microbiota between mothers and children. This study highlights the potential pathogenesis of PIBD and provides a basis for developing targeted interventions.
Humans
;
Gastrointestinal Microbiome
;
Female
;
Risk Factors
;
Case-Control Studies
;
Male
;
Child
;
Inflammatory Bowel Diseases/etiology*
;
Adult
;
RNA, Ribosomal, 16S/genetics*
;
Feces/microbiology*
;
Mothers
;
Pregnancy
;
Child, Preschool
5.Regulation of Bifidobacterium-short chain fatty acid metabolism and improvement of intestinal toxicity of vinegar-processed Euphorbiae Pekinensis Radix.
Ling-Jun YE ; Xiao-Fen XU ; Sai-Ya CHEN ; Huan ZHANG ; Yi-Xuan GAN ; Tao MENG ; Rui DING ; Jing LI ; Gang CAO ; Kui-Long WANG
China Journal of Chinese Materia Medica 2024;49(23):6331-6341
To explore the mechanism by which vinegar-processed Euphorbiae Pekinensis Radix regulates gut microbiota and reduces intestinal toxicity, this study aimed to identify key microbial communities related to vinegar-induced detoxification and verify their functions. Using a derivatization method, the study measured the content of short-chain fatty acids(SCFAs) in feces before and after vinegar-processing of Euphorbiae Pekinensis Radix. Combined with the results of previous gut microbiota sequencing, correlation analysis was used to identify key microbial communities related to SCFAs content. Through single-bacterium transplantation experiments, the role of key microbial communities in regulating SCFAs metabolism and alleviating the intestinal toxicity of Euphorbiae Pekinensis Radix was clarified. Fecal extracts were then added to a co-culture system of Caco-2 and RAW264.7 cells, and toxicity differences were evaluated using intestinal tight junction proteins and inflammatory factors as indicators. Additionally, the application of a SCFAs receptor blocker helped confirm the role of SCFAs in reducing intestinal toxicity during vinegar-processing of Euphorbiae Pekinensis Radix. The results of this study indicated that vinegar-processing of Euphorbiae Pekinensis Radix improved the decline in SCFAs content caused by the raw material. Correlation analysis revealed that Bifidobacterium was positively correlated with the levels of acetic acid, propionic acid, isobutyric acid, n-butyric acid, isovaleric acid, and n-valeric acid. RESULTS:: from single-bacterium transplantation experiments demonstrated that Bifidobacterium could mitigate the reduction in SCFAs content induced by raw Euphorbiae Pekinensis Radix, enhance the expression of tight junction proteins, and reduce intestinal inflammation. Similarly, cell experiment results confirmed that fecal extracts from Bifidobacterium-transplanted mice alleviated inflammation and increased the expression of tight junction proteins in intestinal epithelial cells. The use of the free fatty acid receptor-2 inhibitor GLPG0974 verified that this improvement effect was related to the SCFAs pathway. This study demonstrates that Bifidobacterium is the key microbial community responsible for reducing intestinal toxicity in vinegar-processed Euphorbiae Pekinensis Radix. Vinegar-processing increases the abundance of Bifidobacterium, elevates the intestinal SCFAs content, inhibits intestinal inflammation, and enhances the expression of tight junction proteins, thereby improving the intestinal toxicity of Euphorbiae Pekinensis Radix.
Animals
;
Mice
;
Humans
;
Acetic Acid/chemistry*
;
Gastrointestinal Microbiome/drug effects*
;
Fatty Acids, Volatile/metabolism*
;
Bifidobacterium/genetics*
;
Caco-2 Cells
;
Intestines/microbiology*
;
Drugs, Chinese Herbal/chemistry*
;
Euphorbia/toxicity*
;
RAW 264.7 Cells
;
Male
;
Feces/chemistry*
;
Intestinal Mucosa/drug effects*
6.Metagenomic and targeted metabolomic analyses reveal distinct phenotypes of the gut microbiota in patients with colorectal cancer and type 2 diabetes mellitus.
Yong YANG ; Zihan HAN ; Zhaoya GAO ; Jiajia CHEN ; Can SONG ; Jingxuan XU ; Hanyang WANG ; An HUANG ; Jingyi SHI ; Jin GU
Chinese Medical Journal 2023;136(23):2847-2856
BACKGROUND:
Type 2 diabetes mellitus (T2DM) is an independent risk factor for colorectal cancer (CRC), and the patients with CRC and T2DM have worse survival. The human gut microbiota (GM) is linked to the development of CRC and T2DM, respectively. However, the GM characteristics in patients with CRC and T2DM remain unclear.
METHODS:
We performed fecal metagenomic and targeted metabolomics studies on 36 samples from CRC patients with T2DM (DCRC group, n = 12), CRC patients without diabetes (CRC group, n = 12), and healthy controls (Health group, n = 12). We analyzed the fecal microbiomes, characterized the composition and function based on the metagenomics of DCRC patients, and detected the short-chain fatty acids (SCFAs) and bile acids (BAs) levels in all fecal samples. Finally, we performed a correlation analysis of the differential bacteria and metabolites between different groups.
RESULTS:
Compared with the CRC group, LefSe analysis showed that there is a specific GM community in DCRC group, including an increased abundance of Eggerthella , Hungatella , Peptostreptococcus , and Parvimonas , and decreased Butyricicoccus , Lactobacillus , and Paraprevotella . The metabolomics analysis results revealed that the butyric acid level was lower but the deoxycholic acid and 12-keto-lithocholic acid levels were higher in the DCRC group than other groups ( P < 0.05). The correlation analysis showed that the dominant bacterial abundance in the DCRC group ( Parvimonas , Desulfurispora , Sebaldella , and Veillonellales , among others) was negatively correlated with butyric acid, hyodeoxycholic acid, ursodeoxycholic acid, glycochenodeoxycholic acid, chenodeoxycholic acid, cholic acid and glycocholate. However, the abundance of mostly inferior bacteria was positively correlated with these metabolic acid levels, including Faecalibacterium , Thermococci , and Cellulophaga .
CONCLUSIONS
Unique fecal microbiome signatures exist in CRC patients with T2DM compared to those with non-diabetic CRC. Alterations in GM composition and SCFAs and secondary BAs levels may promote CRC development.
Humans
;
Gastrointestinal Microbiome/genetics*
;
Diabetes Mellitus, Type 2
;
Microbiota
;
Bacteria/genetics*
;
Fatty Acids, Volatile
;
Colorectal Neoplasms/metabolism*
;
Butyrates
;
Feces/microbiology*
7.A panel study on the effect of atmospheric PM2.5 exposure on the gut microbiome in healthy elderly people aged 60-69 years old.
En Min DING ; Jiao Nan WANG ; Fu Chang DENG ; Pei Jie SUN ; Chen Feng LI ; Chen Long LI ; Yu WANG ; Jian Long FANG ; Song TANG ; Xiao Ming SHI
Chinese Journal of Preventive Medicine 2023;57(7):1018-1025
Objective: To analyze the short-term effect of individual atmospheric PM2.5 exposure on the diversity, enterotype, and community structure of gut microbiome in healthy elderly people in Jinan, Shandong province. Methods: The present panel study recruited 76 healthy elderly people aged 60-69 years old in Dianliu Street, Lixia District, Jinan, Shandong Province, and followed them up five times from September 2018 to January 2019. The relevant information was collected by questionnaire, physical examination, precise monitoring of individual PM2.5 exposure, fecal sample collection and gut microbiome 16S rDNA sequencing. The Dirichlet multinomial mixtures (DMM) model was used to analyze the enterotype. Linear mixed effect model and generalized linear mixed effect model were used to analyze the effect of PM2.5 exposure on gut microbiome α diversity indices (Shannon, Simpson, Chao1, and ACE indices), enterotype and abundance of core species. Results: Each of the 76 subjects participated in at least two follow-up visits, resulting in a total of 352 person-visits. The age of 76 subjects was (65.0±2.8) years old with BMI (25.0±2.4) kg/m2. There were 38 males accounting for 50% of the subjects. People with an educational level of primary school or below accounted for 10.5% of the 76 subjects, and those with secondary school and junior college or above accounting for 71.1% and 18.4%. The individual PM2.5 exposure concentration of 76 subjects during the study period was (58.7±53.7) μg/m3. DMM model showed that the subjects could be divided into four enterotypes, which were mainly driven by Bacteroides, Faecalibacterium, Lachnospiraceae, Prevotellaceae, and Ruminococcaceae. Linear mixed effects model showed that different lag periods of PM2.5 exposure were significantly associated with a lower gut α diversity index (FDR<0.05 after correction). Further analysis showed that PM2.5 exposure was significantly associated with changes in the abundances of Firmicutes (Megamonas, Blautia, Streptococcus, etc.) and Bacteroidetes (Alistipes) (FDR<0.05 after correction). Conclusion: Short-term PM2.5 exposure is significantly associated with a decrease in gut microbiome diversity and changes in the abundance of several species of Firmicutes and Bacteroidetes in the elderly. It is necessary to further explore the underlying mechanisms between PM2.5 exposure and the gut microbiome, so as to provide a scientific basis for promoting the intestinal health of the elderly.
Aged
;
Humans
;
Male
;
Middle Aged
;
Feces/microbiology*
;
Gastrointestinal Microbiome
;
Particulate Matter
;
RNA, Ribosomal, 16S/genetics*
;
Female
8.Biotransformation differences of ginsenoside compound K mediated by the gut microbiota from diabetic patients and healthy subjects.
Sutianzi HUANG ; Li SHAO ; Manyun CHEN ; Lin WANG ; Jing LIU ; Wei ZHANG ; Weihua HUANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(10):723-729
Many natural products can be bio-converted by the gut microbiota to influence pertinent efficiency. Ginsenoside compound K (GCK) is a potential anti-type 2 diabetes (T2D) saponin, which is mainly bio-transformed into protopanaxadiol (PPD) by the gut microbiota. Studies have shown that the gut microbiota between diabetic patients and healthy subjects are significantly different. Herein, we aimed to characterize the biotransformation of GCK mediated by the gut microbiota from diabetic patients and healthy subjects. Based on 16S rRNA gene sequencing, the results indicated the bacterial profiles were considerably different between the two groups, especially Alistipes and Parabacteroides that increased in healthy subjects. The quantitative analysis of GCK and PPD showed that gut microbiota from the diabetic patients metabolized GCK slower than healthy subjects through liquid chromatography tandem mass spectrometry (LC-MS/MS). The selected strain A. finegoldii and P. merdae exhibited a different metabolic capability of GCK. In conclusion, the different biotransformation capacity for GCK may impact its anti-diabetic potency.
Humans
;
Gastrointestinal Microbiome/genetics*
;
Chromatography, Liquid/methods*
;
Healthy Volunteers
;
RNA, Ribosomal, 16S
;
Feces/microbiology*
;
Tandem Mass Spectrometry
;
Biotransformation
;
Diabetes Mellitus, Type 2/drug therapy*
9.Prevalence of Echinococcus infections in wild carnivores based on copro - DNA tests in Serthar County of Sichuan Province.
L YANG ; Y YANG ; W YU ; Q WANG ; B ZHONG ; K HUA ; Y LIU ; Y HUANG
Chinese Journal of Schistosomiasis Control 2023;35(5):492-496
OBJECTIVE:
To investigate the prevalence of Echinococcus infections in wild carnivores in Serthar County, Sichuan Province, so as to provide insights into echinococcosis control in local areas.
METHODS:
Stool samples were collected from wild carnivores in Serthar County, Sichuan Province in May 2021, and the host sources of stool samples and Echinococcus infections were identified using PCR assays. The prevalence of E. multilocularis, E. granulosus and E. shiquicus infections was estimated in different hosts.
RESULTS:
A total of 583 stool samples were collected from wild carnivores, including 147 stool samples from fox, 154 from wolf, 227 from wild dogs and 11 from lynx. The overall prevalence of E. multilocularis, E. granulosus and E. shiquicus infections was 5.68%, 0.19% and 14.20% in canine stool samples, and no E. granulosus infection was detected in fox stool samples, while the prevalence of E. multilocularis and E. shiquicus infections was 0.68% and 47.62% in fox stool samples (χ2 = 88.41, P < 0.001). No E. granulosus or E. shiquicus infection was detected in wolf stool samples, and the prevalence of E. multilocularis infection was 10.39% in wolf stool samples. The prevalence of E. multilocularis, E. granulosus and E. shiquicus infections was 5.73%, 0.44% and 2.20% in canine stool samples (χ2 = 12.13, P < 0.01). In addition, the prevalence of E. multilocularis infections was significantly higher in wolf stool samples than in canine and fox stool samples (χ2 = 13.23, P < 0.01), and the prevalence of E. shiquicus infections was significantly higher in fox stool samples than in canine and wolf stool samples (χ2 = 187.01, P < 0.001). No Echinococcus infection was identified in 11 lynx stool samples.
CONCLUSIONS
The prevalence of Echinococcus infections is high in wild canines in Serthar County, Sichuan Province. Wolf, wild dog and fox all participate in the wild life cycle of E. multilocularis in Serthar County, and wolf and wild dogs may play a more important role.
Animals
;
Dogs/microbiology*
;
China/epidemiology*
;
DNA, Helminth/genetics*
;
Echinococcosis/veterinary*
;
Feces
;
Foxes/microbiology*
;
Lynx/microbiology*
;
Prevalence
;
Wolves/microbiology*
;
Carnivora/microbiology*
10.Changes in the structure of intestinal mucosal flora in colorectal cancer patients.
Mei Mei HU ; Kai Yang CHEN ; Ning Yu WANG ; Yu Fan ZHAO ; Cheng Jin WEI ; Ling Xiang MENG ; Yong TANG ; Yu Ou TENG ; Hai Kuan WANG
Journal of Southern Medical University 2022;42(2):263-271
OBJECTIVE:
To investigate the changes in bacterial flora in fecal samples, at the tumor loci and in adjacent mucosa in patients with colorectal cancer (CRC).
METHODS:
We collected fecal samples from 13 patients with CRC and 20 healthy individuals and tumor and adjacent mucosa samples from 6 CRC patients. The differences in bacterial composition between the fecal and mucosa samples were analyzed with 16S rDNA sequencing and bioinformatics methods. We also detected the total number of bacteria in the feces using flow cytometry, isolated and identified the microorganisms in the fecal and mucosa samples using common bacterial culture media. We further tested the effects of 7 isolated bacterial strains on apoptosis of 3 CRC cell lines using lactate dehydrogenase detection kit.
RESULTS:
The bacterial α-diversity in the feces of healthy individuals and in adjacent mucosa of CRC patients was significantly higher than that in the feces and tumor mucosa in CRC patients (P < 0.05). Lactobacillaceae is a specific bacteria in the feces, while Escherichia, Enterococcus, and Fusobacterium are specific bacteria in tumor mucosa of CRC patients as compared with healthy individuals. Cell experiment with3 CRC cell lines showed that Bacteroides fragilis isolated from the tumor mucosa of CRC patients produced significant inhibitory effects on cell proliferation (P < 0.0001), while the isolated strain Fusobacterium nucleatum obviously promoted the proliferation of the cell lines (P < 0.001).
CONCLUSION
The bacterial flora in the feces, tumor mucosa and adjacent mucosa of CRC patients is significantly different from that in the feces of healthy individuals, and the fecal flora of CRC patients can not represent the specific flora of the tumor mucosa. Inhibition of F. nucleatum colonization in the tumor mucosa and promoting B. fragilis colonization may prove beneficial for CRC treatment.
Bacteria
;
Colorectal Neoplasms/pathology*
;
Feces/microbiology*
;
Gastrointestinal Microbiome
;
Humans
;
Intestinal Mucosa

Result Analysis
Print
Save
E-mail