1.Prokaryotic expression, purification and immunogenicity of SARS-CoV-2 omicron variant nucleocapsid protein.
Zewen TU ; Quansheng WANG ; Shiguo LIU ; Haosen LIU ; Chunyan ZENG ; Juanjuan XIE ; Mingzhi LI ; Jingcai LI ; Min WANG ; Shiqi WENG ; Lumei KANG ; Lingbao KONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):735-743
Objective The study aims to investigate the immunological functions of the nucleocapsid (N) protein of the novel coronavirus Omicron (BA.1, BA.2) and evaluate the differences among different N proteins of mutant strains in immunogenicity. Methods By aligning sequences, the mutation sites of the Omicron (BA.1, BA.2) N protein relative to prototype strain of the novel coronavirus (Wuhan-Hu-1) were determined. The pET-28a-N-Wuhan-Hu-1 plasmid was used as template to construct pET-28a-BA.1/BA.2-N through single point mutation or homologous recombination. The three kinds of N protein were expressed in prokaryotic system, purified through Ni-NTA affinity chromatography, and then immunized into mice. The titer and reactivity of the polyclonal antibody, as well as the expression level of IL-1β and IFN-γ in mouse spleen cells, were detected using indirect ELISA and Western blot assay. Results The constructed prokaryotic expression plasmids were successfully used to express the Wuhan-Hu-1 N, BA.1 N, and BA.2 N proteins in E.coli BL21(DE3) at 37 DegreesCelsius for 4 hours. The indirect ELISA test showed that the titers of polyclonal antibody prepared by three N proteins were all 1:51 200. All three N proteins can increase the expression of IFN-γ and IL-1β cytokines, but the effect of Omicron N protein in activing two cytokines was more obvious than that of Wuhan-Hu-1 N protein. Conclusion The study obtained three new coronavirus N proteins and polyclonal antibodies, and confirmed that mutations in the amino acid sites of the N protein can affect its immunogenicity. This provides a basis for developing rapid diagnostic methods targeting N protein of different novel coronavirus variants.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Nucleocapsid Proteins/isolation & purification*
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Mice, Inbred BALB C
;
Interferon-gamma/metabolism*
;
Interleukin-1beta/metabolism*
;
Female
;
Escherichia coli/metabolism*
;
Mutation
;
Humans
2.Efficient expression and biological activity characterization of human potassium channel KV3.1 in an Escherichia coli cell-free protein synthesis system.
Zitong ZHAO ; Tianqi ZHOU ; Yunyang SONG ; Fanghui WU ; Yifeng YIN ; Yanli LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1000-1006
Objective This study aims to achieve high-yield functional expression of the human voltage-gated potassium channel KV3.1 using an Escherichia coli cell-free protein synthesis system, thereby providing a novel synthetic approach for drug screening, structural analysis and functional characterization of KV3.1. Methods KV3.1 was expressed in an Escherichia coli cell-free protein synthesis system for 10 hours in the presence of peptide surfactant A6K. The secondary structure of KV3.1 was analyzed by circular dichroism spectroscopy. The potassium channel activity of the recombinant protein liposome KV3.1-A6K was investigated using fluorescent dyes Oxonol VI as indicators, which are capable of reflecting alterations in membrane potential. Results Soluble KV3.1 protein was successfully synthesized, achieving a purified yield of up to 1.2 mg/mL via an Escherichia coli cell-free protein synthesis system. Circular dichroism spectroscopy revealed that KV3.1 exhibited characteristic α-helical secondary structures. Membrane potential fluorescence assays demonstrated that the KV3.1-A6K proteoliposomes, which were reconstructed with surfactant peptide A6K, exhibited remarkable potassium ion permeability. Conclusion This study successfully achieved high-yield expression of human KV3.1 with activity using an Escherichia coli-based cell-free protein synthesis system. This innovative method not only significantly enhances the expression yield of KV3.1, but also maintains its functional activity, thereby establishing a novel and efficient synthetic platform for drug screening and advancing our understanding of structure-function relationships in KV3.1 research.
Humans
;
Escherichia coli/metabolism*
;
Shaw Potassium Channels/biosynthesis*
;
Cell-Free System
;
Circular Dichroism
;
Protein Biosynthesis
;
Recombinant Proteins/metabolism*
;
Membrane Potentials
;
Shab Potassium Channels
3.A novel carbonyl reductase for the synthesis of (R)-tolvaptan.
Yahui LIU ; Xuming WANG ; Shuo MA ; Keyu LIU ; Wei LI ; Lulu ZHANG ; Jie DU ; Honglei ZHANG
Chinese Journal of Biotechnology 2025;41(1):321-332
Screening carbonyl reductases with the ability to catalyze the reduction of complex carbonyl compounds is of great significance for the biosynthesis of R-tolvaptan(R-TVP). In this study, the target carbonyl reductase in the crude enzyme extract of rabbit liver was separated, purified, and identified by ammonium sulfate precipitation, gel-filtration chromatography, ion exchange chromatography, affinity chromatography, and protein mass spectrometry. With the rabbit liver genome as the template, the gene encoding the carbonyl reductase rlsr5 was amplified by PCR and the recombinant strain was successfully constructed. After RLSR5 was purified by affinity chromatography, its enzymatic properties were characterized. The results indicated that the gene sequence of rlsr5 was 972 bp, encoding a protein with a molecular weight of 40 kDa. RLSR5 was a dimeric protein, and each monomer was composed of a (α/β)8-barrel structure. RLSR5 could asymmetrically reduce 7-chloro-1-[2-methyl-4-[(2- methylbenzoyl)amino]benzoyl]-5-oxo-2,3,4,5-tetrahydro-1H-1-benzazepine (prochiral ketone, PK) to synthesize R-TVP. The specific activity of the enzyme was 36.64 U/mg, and the optical purity of the product was 99%. This enzyme showcased the optimal performance at pH 6.0 and 30 °C. It was independent of metal ions, with the activity enhanced by Mn2+. This study lays a foundation for the biosynthesis of tolvaptan of optical grade.
Animals
;
Rabbits
;
Alcohol Oxidoreductases/biosynthesis*
;
Recombinant Proteins/metabolism*
;
Escherichia coli/metabolism*
;
Liver/enzymology*
4.Expression and enzymatic characterization of a chitosanase with tolerance to a wide range of pH from Bacillus atrophaeus.
Wenjuan DU ; Awagul TURSUN ; Zhiqin DONG ; Huijuan MA ; Zhenghai MA
Chinese Journal of Biotechnology 2025;41(1):352-362
To screen and identify a chitosanase with high stability, we cloned the chitosanase gene from Bacillus atrophaeus with a high protease yield from the barren saline-alkali soil and expressed this gene in Escherichia coli. The expressed chitosanase of B. atrophaeus (BA-CSN) was purified by nickel-affinity column chromatography. The properties including optimal temperature, optimal pH, substrate specificity, and kinetic parameters of BA-CSN were characterized. The results showed that BA-CSN had the molecular weight of 31.13 kDa, the optimal temperature of 55 ℃, the optimal pH 5.5, and good stability at temperatures below 45 ℃ and pH 4.0-9.0. BA-CSN also had good stability within 4 h of pH 3.0 and 10.0, be activated by K+, Na+, Mn2+, Ca2+, Mg2+, and Co2+, (especially by Mn2+), and be inhibited by Fe3+, Cu2+, and Ag+. BA-CSN showcased the highest relative activity in the hydrolysis of colloidal chitosan, and it had good hydrolysis ability for colloidal chitin. Under the optimal catalytic conditions, BA-CSN demonstrated the Michaelis constant Km and maximum reaction rate Vmax of 9.94 mg/mL and 26.624 μmoL/(mL·min), respectively, for colloidal chitosan. In short, BA-CSN has strong tolerance to acids and alkali, possessing broad industrial application prospects.
Bacillus/genetics*
;
Hydrogen-Ion Concentration
;
Escherichia coli/metabolism*
;
Glycoside Hydrolases/biosynthesis*
;
Substrate Specificity
;
Enzyme Stability
;
Chitosan/metabolism*
;
Temperature
;
Kinetics
;
Cloning, Molecular
;
Bacterial Proteins/biosynthesis*
;
Recombinant Proteins/genetics*
5.Construction and optimization of 1, 4-butanediamine biosensor based on transcriptional regulator PuuR.
Junjie LIU ; Minmin JIANG ; Tong SUN ; Xiangxiang SUN ; Yongcan ZHAO ; Mingxia GU ; Fuping LU ; Ming LI
Chinese Journal of Biotechnology 2025;41(1):437-447
Biosensors have become powerful tools for real-time monitoring of specific small molecules and precise control of gene expression in biological systems. High-throughput sensors for 1, 4-butanediamine biosynthesis can greatly improve the screening efficiency of high-yielding 1, 4-butanediamine strains. However, the strategies for adapting the characteristics of biosensors are still rarely studied, which limits the applicability of 1, 4-butanediamine biosensors. In this paper, we propose the development of a 1, 4-butanediamine biosensor based on the transcriptional regulator PuuR, whose homologous operator puuO is installed in the constitutive promoter PgapA of Escherichia coli to control the expression of the downstream superfolder green fluorescent protein (sfGFP) as the reporter protein. Finally, the biosensor showed a stable linear relationship between the GFP/OD600 value and the concentration of 1, 4-butanediamine when the concentration of 1, 4-butanediamine was 0-50 mmol/L. The promoters with different strengths in the E. coli genome were used to modify the 1, 4-butanediamine biosensor, and the functional properties of the PuuR-based 1, 4-butanediamine biosensor were explored and improved, which laid the groundwork for high-throughput screening of engineered strains highly producing 1, 4-butanediamine.
Biosensing Techniques/methods*
;
Escherichia coli/metabolism*
;
Promoter Regions, Genetic/genetics*
;
Green Fluorescent Proteins/metabolism*
;
Transcription Factors/genetics*
;
Escherichia coli Proteins/genetics*
;
Diamines/metabolism*
;
Gene Expression Regulation, Bacterial
6.A flavin-containing monooxygenase from Schizosaccharomyces pombe: characterization and application in the synthesis of S-methyl-L-cysteine sulfoxide.
Mengka LIAN ; Zhaolin SONG ; Wenjing GAO ; Gang ZHU ; Mengjun DONG ; Yu LI ; Yihan LIU ; Fenghua WANG ; Fuping LU
Chinese Journal of Biotechnology 2025;41(1):474-485
S-methyl-L-cysteine sulfoxide (SMCO) is a non-protein sulfur-containing amino acid with a variety of functions. There are few reports on the enzymes catalyzing the biosynthesis of SMCO from S-methyl-L-cysteine (SMC). In this study, the flavin-containing monooxygenase gene derived from Schizosaccharomyces pombe (spfmo) was heterologously expressed in Escherichia coli BL21(DE3) and the enzymatic properties of the expressed protein were analyzed. The optimum catalytic conditions of the recombinant SpFMO were 30 ℃ and pH 8.0, under which the enzyme activity reached 72.77 U/g. An appropriate amount of Mg2+ improved the enzyme activity. The enzyme kinetic analysis showed that the Km and kcat/Km of SpFMO on the substrate SMC were 23.89 μmol/L and 61.71 L/(min·mmol), respectively. Under the optimal reaction conditions, the yield of SMCO synthesized from SMC catalyzed by SpFMO was 12.31% within 9 h. This study provides reference for the enzymatic synthesis of SMCO.
Schizosaccharomyces/genetics*
;
Escherichia coli/metabolism*
;
Recombinant Proteins/metabolism*
;
Cysteine/biosynthesis*
;
Mixed Function Oxygenases/metabolism*
;
Schizosaccharomyces pombe Proteins/metabolism*
;
Oxygenases/metabolism*
;
Kinetics
7.Cloning, prokaryotic expression, and functional validation of flavonoid 3-O-glycosyltransferase gene (Rh3GT) from Rhododendron hybridum Hort.
Yicheng YAN ; Zehang WU ; Yuhang JIANG ; Gaoyuan HU ; Yujie YANG ; Xiaohong XIE ; Yueyan WU ; Yonghong JIA
Chinese Journal of Biotechnology 2025;41(2):881-895
Flavonoid 3-O-glucosyltransferase (3GT) is a key enzyme in the glucosidation of anthocyanins. To investigate the 3GT gene in rhododendron, we cloned an open reading frame (ORF) of 3GT gene (named Rh3GT) from Rhododendron hybridum Hort (Red cultivar) and then characterized this gene and the deduced protein in terms of the biochemical characteristics, expression level, and enzymatic function. The results showed that Rh3GT had a full length of 993 bp and encoded 330 amino acid residues. The deduced protein was hydrophilic, stable, weak acid, belonging to the glycosyltransferase family (GT-B type), with glutamine (Q) at position 44 in the PSPG box. The phylogenetic analysis showed that Rh3GT was most closely related to Vc3GT from Vaccinium corymbosum and Vm3GT from Vaccinium myrtillus. Rh3GT was expressed in the stems, leaves, and flowers and almost not expressed in the roots, with the highest expression level in petals during full blooming stage. Introduction of pCAMBIAL1302-Rh3GT into petals significantly up-regulated the expression level of Rh3GT and increased the total anthocyanin accumulation. Rh3GT was successfully expressed in Escherichia coli BL21 in the form of inclusion bodies with a size of about 36 kDa. The results of HPLC showed that the recombinant Rh3GT after denaturation, purification, and dilution could catalyze the synthesis of cyanidin and UDP-glucose to synthesize cyanidin 3-O-glucoside, indicating that the expressed protein had 3GT activity. This study provides basic data for further studying the molecular regulation mechanism of anthocyanin biosynthesis and theoretical support for molecular breeding of rhododendron.
Rhododendron/classification*
;
Glucosyltransferases/metabolism*
;
Cloning, Molecular
;
Escherichia coli/metabolism*
;
Recombinant Proteins/biosynthesis*
;
Anthocyanins/biosynthesis*
;
Phylogeny
;
Plant Proteins/metabolism*
;
Amino Acid Sequence
8.Expression, purification, and tumor uptake of fusion ferritin.
Guoyin YAN ; Jun LI ; Ziyang LI
Chinese Journal of Biotechnology 2025;41(4):1372-1381
Ferritin is considered as an ideal delivery system due to its precise targeting, reversible self-assembly, high biocompatibility, and easy modification. this study aims to express, purify, and identify three fusion ferritin proteins, and explore their tumor targeting. Three fusion ferritin genes were synthesized and cloned into prokaryotic expression vectors, and the recombinant proteins were purified by affinity chromatography with nickel columns. The fusion ferritin proteins were identified by native polyacrylamide gel electrophoresis (native-PAGE), Western blotting, and circular dichroism. Fluorescein 5-isothiocyanate (FITC) was used to react with fusion ferritin, and confocal laser scanning microscopy was employed to evaluate the tumor targeting of fusion ferritin. The reaction system of sulfo-cyanine7 (Cy7-SE) with fusion ferritin was injected into the tail vein of melanoma mice for in vivo tumor imaging to explore the tumor targeting of fusion ferritin. The results showed that soluble fusion ferritin proteins of about 21 kDa were expressed under the induction by isopropylthio-β-d-galactoside (IPTG), and the recombinant proteins with high purity were obtained. Western blotting showed that the recombinant proteins could be recognized by the corresponding antibodies. The target proteins were identified as multimers with α helixes by native-PAGE and circular dichroism. In vitro and in vivo tumor uptake experiments demonstrated that fusion ferritin was taken up by tumor cells and tumor tissue. This study successfully expressed, purified, and identified fusion ferritin, and verified its tumor uptake in vitro and in vivo, which laid a foundation for the application of ferritin in biomedicine.
Animals
;
Mice
;
Recombinant Fusion Proteins/isolation & purification*
;
Ferritins/metabolism*
;
Escherichia coli/metabolism*
;
Melanoma, Experimental/metabolism*
;
Humans
9.Prokaryotic expression of human Alg1 protein and analysis of the transmembrane domain properties.
Dongzhi WEI ; Zhenghui CHEN ; Chundi WANG ; Xiaodong GAO ; Ning WANG
Chinese Journal of Biotechnology 2025;41(4):1535-1546
As the most common type of protein glycosylation, N-glycosylation begins with the synthesis of the dolichol-linked oligosaccharide (DLO) precursor in the endoplasmic reticulum. The mannosyltransferase Alg1 catalyzes the addition of the first mannose molecule to DLO, serving as a key enzyme in this biochemical pathway. The defect of human ALG1 gene can lead to the congenital disorders of glycosylation (CDG), i.e., ALG1-CDG. Therefore, it is of great significance to establish the expression and activity assay system of Homo sapiens Alg1 (HsAlg1) in vitro. In this study, full-length plasmid pET28a-His6-HsAlg1 and transmembrane domain-lacking plasmid pET28a-His6-HsAlg123-464 were constructed and expressed in Escherichia coli, and the activity of recombinant HsAlg1 and HsAlg123-464 was measured by liquid chromatography tandem mass spectrometry (LC-MS) with dolichyl-pyrophosphate GlcNAc2 (DPGn2) as the substrate. The results showed that HsAlg1 had transglycosylation activity, while the activity decreased after protein purification, which was partially restored upon re-addition of membrane components. However, HsAlg123-464 was unable to catalyze glycosylation. The results indicate that the N-terminal transmembrane domain (TMD) of HsAlg1 plays an important role in the catalytic reaction. This study lays a foundation for further expression and activity analysis of ALG1-CDG-related mutants.
Humans
;
Escherichia coli/metabolism*
;
Mannosyltransferases/biosynthesis*
;
Glycosylation
;
Recombinant Proteins/metabolism*
;
Protein Domains
10.Optimization of promoter screening for heterologous expression of carbonic anhydrase and characterization of its enzymatic properties and carbon sequestration performance.
Dandan YAO ; Yunhui LI ; Xingjia FU ; Hui WANG ; Yun LIU
Chinese Journal of Biotechnology 2025;41(4):1588-1604
In this study, high-throughput promoter screening was employed to optimize the heterologous expression of Mesorhizobium loti carbonic anhydrase (MlCA) in order to reduce the costs associated with carbon capture and storage (CCS). To simplify the complexity of traditional vectors, a fusion protein expression system was constructed using superfolder green fluorescent protein (sfGFP) and MlCA. The synthetic promoter library in Escherichia coli was utilized for efficient one-step screening. Based on fluorescence intensity on agar plates, a total of 143 monoclonal colonies were identified, forming a library with varying expression levels. The top four recombinants with the highest fluorescence intensity were selected, among which MlCA driven by the promoter 342042/+ exhibited the highest enzymatic activity, with a specific activity of the 34.6 Wilbur-Anderson units (WAU)/mg. Optimization experiments revealed that MlCA exhibited the best performance when cultured for 4 days under pH 7.0 and 40 ℃ conditions. The Michaelis constant (Km·hdy) and maximum reaction rate (Vmax·hdy) for CO2 hydration were determined to be 62.46 mmol/L and 0.164 mmol/(s·L), respectively. For esterase hydrolysis, MlCA showed the Km and Vmax of 639.8 mmol/L and 0.035 mmol/(s·L), respectively. MlCA accelerated the CO2 hydration process, promoting CO2 mineralized into CaCO3 within 9 min at low pH and room temperature conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses confirmed that the precipitated product was calcite. This study provides a low-cost and environmentally friendly alternative for future CCS applications.
Carbonic Anhydrases/biosynthesis*
;
Promoter Regions, Genetic/genetics*
;
Escherichia coli/metabolism*
;
Carbon Sequestration
;
Carbon Dioxide/metabolism*
;
Green Fluorescent Proteins/metabolism*

Result Analysis
Print
Save
E-mail