1.Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli.
Xiang-Lei LIU ; Jun LIN ; Hai-Feng HU ; Bin ZHOU ; Bao-Quan ZHU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(4):286-293
Shikimic acid (SA) is the key synthetic material for the chemical synthesis of Oseltamivir, which is prescribed as the front-line treatment for serious cases of influenza. Multi-gene expression vector can be used for expressing the plurality of the genes in one plasmid, so it is widely applied to increase the yield of metabolites. In the present study, on the basis of a shikimate kinase genetic defect strain Escherichia coli BL21 (ΔaroL/aroK, DE3), the key enzyme genes aroG, aroB, tktA and aroE of SA pathway were co-expressed and compared systematically by constructing a series of multi-gene expression vectors. The results showed that different gene co-expression combinations (two, three or four genes) or gene orders had different effects on the production of SA. SA production of the recombinant BL21-GBAE reached to 886.38 mg·L(-1), which was 17-fold (P < 0.05) of the parent strain BL21 (ΔaroL/aroK, DE3).
Escherichia coli
;
enzymology
;
genetics
;
metabolism
;
Escherichia coli Proteins
;
genetics
;
metabolism
;
Plasmids
;
genetics
;
metabolism
;
Shikimic Acid
;
metabolism
2.Development of a BLI assay-based method for detecting LptA/LptC interaction.
Xiaowei DAI ; Xiaohong ZHU ; Shuyi SI ; Yan LI ; Lijie YUAN
Chinese Journal of Biotechnology 2021;37(9):3300-3309
In Gram-negative bacteria, lipopolysaccharide transport (Lpt) protein LptA and LptC form a complex to transport LPS from the inner membrane (IM) to the outer membrane (OM). Blocking the interaction between LptA and LptC will lead to the defect of OM and cell death. Therefore, Lpt protein interaction could be used as a target to screen new drugs for killing Gram-negative bacteria. Here we used biolayer interferometry (BLI) assay to detect the interaction between LptA and LptC, with the aim to develop a method for screening the LptA/LptC interaction blockers in vitro. Firstly, LptC and LptA with or without signal peptide (LptAfull or LptAno signal) were expressed in E. coli BL21(DE3). The purified proteins were then labeled with biotin and the super streptavidin (SSA) biosensor was blocked with diluent. The biotin labeled protein sample was mixed with the sensor, and then the binding of the protein with a series of diluted non biotinylated protein was detected. At the same time, non-biotinylated protein was used as a control. The binding of biotinylated protein to a small molecule IMB-881 and the blocking of interaction were also detected by the same method. In the blank control, the biosensor without biotinylated protein was used to detect the serially diluted samples. The signal response constant was calculated by using steady analysis. The results showed that biotinylated LptC had a good binding activity with LptAfull and LptAno signal with KD value 2.9e⁻⁷±7.9e⁻⁸ and 6.0e⁻⁷±2.8e⁻⁸, respectively; biotinylated LptAno signal had a good binding activity with LptC, with a KD value of 9.6e⁻⁷±7.2e⁻⁸. All binding curves showed obvious fast binding and fast dissociation morphology. The small molecule compound IMB-881 can bind to LptA to block the interaction between LptA and LptC, but has no binding activity with LptC. In summary, we developed a method for detecting the LptA/LptC interaction based on the BLI technology, and confirmed that this method can be used to evaluate the blocking activity of small molecule blockers, providing a new approach for the screening of LptA/LptC interaction blockers.
Carrier Proteins
;
Escherichia coli/metabolism*
;
Escherichia coli Proteins/metabolism*
;
Interferometry
;
Membrane Proteins/metabolism*
3.Advances in the biosynthesis of L-homoserine and its derivatives by metabolic engineering of Escherichia coli.
Kun NIU ; Liping GAO ; Lirong GE ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2022;38(12):4385-4402
L-homoserine and its derivatives (O-succinyl-L-homoserine and O-acetyl-L-homoserine) are precursors for the biosynthesis of L-methionine, and various C4 compounds (isobutanol, γ-butyrolactone, 1, 4-butanediol, 2, 4-dihydroxybutyric acid) and L-phosphinothricin. Therefore, the fermentative production of L-homoserine and its derivatives became the research hotspot in recent years. However, the low fermentation yield and conversion rate, and the unclear regulation mechanism for the biosynthesis of L-homoserine and its derivatives, hamper the development of an efficient production process for L-homoserine and its derivatives. This review summarized the advances in the biosynthesis of L-homoserine and its derivatives by metabolic engineering of Escherichia coli from the aspects of substrate uptake, redirection of carbon flow at the key nodes, recycle of NADPH and export of target products. This review may facilitate subsequent metabolic engineering and biotechnological production of L-homoserine and its derivatives.
Escherichia coli/metabolism*
;
Metabolic Engineering
;
Homoserine/metabolism*
;
Escherichia coli Proteins/metabolism*
;
Fermentation
4.Construction of an l-cysteine hyper-producing strain of Escherichia coli based on a balanced carbon and sulfur module strategy.
Bo ZHANG ; Kai CHEN ; Hui YANG ; Zidan WU ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2022;38(12):4567-4586
l-cysteine is an important sulfur-containing α-amino acid. It exhibits multiple physiological functions with diverse applications in pharmaceutical cosmetics and food industry. Here, a strategy of coordinated gene expression between carbon and sulfur modules in Escherichia coli was proposed and conducted for the production of l-cysteine. Initially, the titer of l-cysteine was improved to (0.38±0.02) g/L from zero by enhancing the biosynthesis of l-serine module (serAf, serB and serCCg) and overexpression of CysB. Then, promotion of l-cysteine transporter, increased assimilation of sulfur, reduction or deletion of l-cysteine and l-serine degradation pathway and enhanced expression of cysEf (encoding serine acetyltransferase) and cysBSt (encoding transcriptional dual regulator CysB) were achieved, resulting in an improved l-cysteine titer (3.82±0.01) g/L. Subsequently, expressions of cysM, nrdH, cysK and cysIJ genes that were involved in sulfur module were regulated synergistically with carbon module combined with utilization of sulfate and thiosulfate, resulting in a strain producing (4.17±0.07) g/L l-cysteine in flask shake and (11.94±0.1) g/L l-cysteine in 2 L bioreactor. Our results indicated that efficient biosynthesis of l-cysteine could be achieved by a proportional supply of sulfur and carbon in vivo. This study would facilitate the commercial bioproduction of l-cysteine.
Escherichia coli/metabolism*
;
Cysteine/metabolism*
;
Bioreactors
;
Sulfur/metabolism*
;
Serine/metabolism*
5.Molecular engineering and immobilization of lysine decarboxylase for synthesis of 1, 5-diaminopentane: a review.
Chinese Journal of Biotechnology 2022;38(12):4403-4419
1, 5-diaminopentane, also known as cadaverine, is an important raw material for the production of biopolyamide. It can be polymerized with dicarboxylic acid to produce biopolyamide PA5X whose performances are comparable to that of the petroleum-based polyamide materials. Notably, biopolyamide uses renewable resources such as starch, cellulose and vegetable oil as substrate. The production process does not cause pollution to the environment, which is in line with the green and sustainable development strategy. The biosynthesis of 1, 5-diaminopentane mainly includes two methods: the de novo microbial synthesis and the whole cell catalysis. Lysine decarboxylase as the key enzyme for 1, 5-diaminopentane production, mainly includes an inducible lysine decarboxylase CadA and a constituent lysine decarboxylase LdcC. Lysine decarboxylase is a folded type Ⅰ pyridoxal-5' phosphate (PLP) dependent enzyme, which displays low activity and unstable structure, and is susceptible to deactivation by environmental factors in practical applications. Therefore, improving the catalytic activity and stability of lysine decarboxylase has become a research focus in this field, and molecular engineering and immobilization are the mainly approaches. Here, the mechanism, molecular engineering and immobilization strategies of lysine decarboxylase were reviewed, and the further strategies for improving its activity and stability were also prospected, with the aim to achieve efficient production of 1, 5-diaminopentane.
Escherichia coli/metabolism*
;
Carboxy-Lyases/metabolism*
;
Catalysis
;
Cadaverine/metabolism*
6.Using dynamic molecular switches for shikimic acid production in Escherichia coli.
Jianshen HOU ; Cong GAO ; Xiulai CHEN ; Liming LIU
Chinese Journal of Biotechnology 2020;36(10):2104-2112
Shikimic acid is an intermediate metabolite in the synthesis of aromatic amino acids in Escherichia coli and a synthetic precursor of Tamiflu. The biosynthesis of shikimic acid requires blocking the downstream shikimic acid consuming pathway that leads to inefficient production and cell growth inhibition. In this study, a dynamic molecular switch was constructed by using growth phase-dependent promoters and degrons. This dynamic molecular switch was used to uncouple cell growth from shikimic acid synthesis, resulting in the production of 14.33 g/L shikimic acid after 72 h fermentation. These results show that the dynamic molecular switch could redirect the carbon flux by regulating the abundance of target enzymes, for better production.
Escherichia coli/genetics*
;
Escherichia coli Proteins/genetics*
;
Industrial Microbiology/methods*
;
Metabolic Engineering
;
Shikimic Acid/metabolism*
7.Mechanism of arginine deiminase activity by site-directed mutagenesis.
Lifeng LI ; Ye NI ; Zhihao SUN
Chinese Journal of Biotechnology 2012;28(4):508-519
Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors (such as melanomas and hepatocellular carcinomas) in phase III clinical trials. In this work, we studied the molecular mechanism of arginine deiminase activity by site-directed mutagenesis. Three mutation sites, A128, H404 and 1410, were introduced into wild-type ADI gene by QuikChange site-directed mutagenesis method, and four ADI mutants M1 (A128T), M2 (H404R), M3 (I410L), and M4 (A128T, H404R) were obtained. The ADI mutants were individually expressed in Escherichia coli BL21 (DE3), and the enzymatic properties of the purified mutant proteins were determined. The results show that both A128T and H404R had enhanced optimum pH, higher activity and stability of ADI under physiological condition (pH 7.4), as well as reduced K(m) value. This study provides an insight into the molecular mechanism of the ADI activity, and also the experimental evidence for the rational protein evolution in the future.
Escherichia coli
;
metabolism
;
Hydrolases
;
genetics
;
metabolism
;
Mutagenesis, Site-Directed
8.MreBCD-associated Cytoskeleton is Required for Proper Segregation of the Chromosomal Terminus during the Division Cycle of Escherichia Coli.
Yu-Jia HUO ; Ling QIAO ; Xiao-Wei ZHENG ; Cheng CUI ; Yuan-Fang MA ; Feng LU
Chinese Medical Journal 2015;128(9):1209-1214
BACKGROUNDIn prokaryotic organisms, the mechanism responsible for the accurate partition of newly replicated chromosomes into daughter cells is incompletely understood. Segregation of the replication terminus of the circular prokaryotic chromosome poses special problems that have not previously been addressed. The aim of this study was to investigate the roles of several protein components (MreB, MreC, and MreD) of the prokaryotic cytoskeleton for the faithful transmission of the chromosomal terminus into daughter cells.
METHODSStrain LQ1 (mreB::cat), LQ2 (mreC::cat), and LQ3 (mreD::cat) were constructed using the Red recombination system. LQ11/pLAU53, LQ12/pLAU53, LQ13/pLAU53, LQ14/pLAU53, and LQ15/pLAU53 strains were generated by P1transduction of (tetO) 240 -Gm and (lacO) 240 -Km cassettes from strains IL2 and IL29. Fluorescence microscopy was performed to observe localization pattern of fluorescently-labeled origin and terminus foci in wild-type and mutant cells. SOS induction was monitored as gfp fluorescence from PsulA-gfp in log phase cells grown in Luria-Bertani medium at 37°C by measurement of emission at 525 nm with excitation at 470 nm in a microplate fluorescence reader.
RESULTSMutational deletion of the mreB, mreC, or mreD genes was associated with selective loss of the terminus region in approximately 40% of the cells within growing cultures. This was accompanied by significant induction of the SOS DNA damage response, suggesting that deletion of terminus sequences may have occurred by chromosomal cleavage, presumably caused by ingrowth of the division septum prior to segregation of the replicated terminal.
CONCLUSIONSThese results imply a role for the MreBCD cytoskeleton in the resolution of the final products of terminus replication and/or in the specific movement of newly replicated termini away from midcell prior to completion of septal ingrowth. This would identify a previously unrecognized stage in the overall process of chromosome segregation.
Chromosome Segregation ; genetics ; physiology ; Cytoskeleton ; metabolism ; Escherichia coli ; genetics ; metabolism
9.Expression and characterization of a novel halohydrin dehalogenase from Rhodospirillaceae bacterium.
Wenjing XU ; Zhi CHEN ; Lei CHEN ; Jinping LIN ; Dongzhi WEI
Chinese Journal of Biotechnology 2021;37(4):1298-1311
As a class of multifunctional biocatalysts, halohydrin dehalogenases are of great interest for the synthesis of chiral β-substituted alcohols and epoxides. There are less than 40 halohydrin dehalogenases with relatively clear catalytic functions, and most of them do not meet the requirements of scientific research and practical applications. Therefore, it is of great significance to excavate and identify more halohydrin dehalogenases. In the present study, a putative halohydrin dehalogenase (HHDH-Ra) from Rhodospirillaceae bacterium was expressed and its enzymatic properties were investigated. The HHDH-Ra gene was cloned into the expression host Escherichia coli BL21(DE3) and the target protein was shown to be soluble. Substrate specificity studies showed that HHDH-Ra possesses excellent specificity for 1,3-dichloro-2-propanol (1,3-DCP) and ethyl-4-chloro-3-hydroxybutyrate (CHBE). The optimum pH and temperature for HHDH-Ra with 1,3-DCP as the reaction substrate were 8.0 and 30 °C, respectively. HHDH-Ra was stable at pH 6.0-8.0 and maintained about 70% of its original activity after 100 h of treatment. The thermal stability results revealed that HHDH-Ra has a half-life of 60 h at 30 °C and 40 °C. When the temperature is increased to 50 °C, the enzyme still has a half-life of 20 h, which is much higher than that of the reported enzymes. To sum up, the novel halohydrin dehalogenase from Rhodospirillaceae bacterium possesses good temperature and pH stability as well as catalytic activity, and shows the potential to be used in the synthesis of chemical and pharmaceutical intermediates.
Escherichia coli/metabolism*
;
Hydrolases/metabolism*
;
Rhodospirillaceae
;
Substrate Specificity
10.Metabolic engineering of Escherichia coli for adipic acid production.
Jie LIU ; Cong GAO ; Xiulai CHEN ; Liang GUO ; Wei SONG ; Jing WU ; Wanqing WEI ; Jia LIU ; Liming LIU
Chinese Journal of Biotechnology 2023;39(6):2375-2389
Adipic acid is a high-value-added dicarboxylic acid which is primarily used in the production of nylon-66 for manufacturing polyurethane foam and polyester resins. At present, the biosynthesis of adipic acid is hampered by its low production efficiency. By introducing the key enzymes of adipic acid reverse degradation pathway into a succinic acid overproducing strain Escherichia coli FMME N-2, an engineered E. coli JL00 capable of producing 0.34 g/L adipic acid was constructed. Subsequently, the expression level of the rate-limiting enzyme was optimized and the adipic acid titer in shake-flask fermentation increased to 0.87 g/L. Moreover, the supply of precursors was balanced by a combinatorial strategy consisting of deletion of sucD, over-expression of acs, and mutation of lpd, and the adipic acid titer of the resulting E. coli JL12 increased to 1.51 g/L. Finally, the fermentation process was optimized in a 5 L fermenter. After 72 h fed-batch fermentation, adipic acid titer reached 22.3 g/L with a yield of 0.25 g/g and a productivity of 0.31 g/(L·h). This work may serve as a technical reference for the biosynthesis of various dicarboxylic acids.
Escherichia coli/metabolism*
;
Metabolic Engineering
;
Bioreactors
;
Fermentation
;
Adipates/metabolism*