1.Diagnostic performance of a computer-aided system for tuberculosis screening in two Philippine cities.
Gabrielle P. FLORES ; Reiner Lorenzo J. TAMAYO ; Robert Neil F. LEONG ; Christian Sergio M. BIGLAEN ; Kathleen Nicole T. UY ; Renee Rose O. MAGLENTE ; Marlex Jorome M. NUGUID ; Jason V. ALACAP
Acta Medica Philippina 2025;59(2):33-40
BACKGROUND AND OBJECTIVES
The Philippines faces challenges in the screening of tuberculosis (TB), one of them being the shortage in the health workforce who are skilled and allowed to screen TB. Deep learning neural networks (DLNNs) have shown potential in the TB screening process utilizing chest radiographs (CXRs). However, local studies on AIbased TB screening are limited. This study evaluated qXR3.0 technology's diagnostic performance for TB screening in Filipino adults aged 15 and older. Specifically, we evaluated the specificity and sensitivity of qXR3.0 compared to radiologists' impressions and determined whether it meets the World Health Organization (WHO) standards.
METHODSA prospective cohort design was used to perform a study on comparing screening and diagnostic accuracies of qXR3.0 and two radiologist gradings in accordance with the Standards for Reporting Diagnostic Accuracy (STARD). Subjects from two clinics in Metro Manila which had qXR 3.0 seeking consultation at the time of study were invited to participate to have CXRs and sputum collected. Radiologists' and qXR3.0 readings and impressions were compared with respect to the reference standard Xpert MTB/RiF assay. Diagnostic accuracy measures were calculated.
RESULTSWith 82 participants, qXR3.0 demonstrated 100% sensitivity and 72.7% specificity with respect to the reference standard. There was a strong agreement between qXR3.0 and radiologists' readings as exhibited by the 0.7895 (between qXR 3.0 and CXRs read by at least one radiologist), 0.9362 (qXR 3.0 and CXRs read by both radiologists), and 0.9403 (qXR 3.0 and CXRs read as not suggestive of TB by at least one radiologist) concordance indices.
CONCLUSIONSqXR3.0 demonstrated high sensitivity to identify presence of TB among patients, and meets the WHO standard of at least 70% specificity for detecting true TB infection. This shows an immense potential for the tool to supplement the shortage of radiologists for TB screening in the country. Future research directions may consider larger sample sizes to confirm these findings and explore the economic value of mainstream adoption of qXR 3.0 for TB screening.
Human ; Tuberculosis ; Diagnostic Imaging ; Deep Learning
2.Diagnostic performance of a computer-aided system for tuberculosis screening in two Philippine cities
Gabrielle P. Flores ; Reiner Lorenzo J. Tamayo ; Robert Neil F. Leong ; Christian Sergio M. Biglaen ; Kathleen Nicole T. Uy ; Renee Rose O. Maglente ; Marlex Jorome M. Nugui ; Jason V. Alacap
Acta Medica Philippina 2024;58(Early Access 2024):1-8
Background and Objectives:
The Philippines faces challenges in the screening of tuberculosis (TB), one of them being the shortage in the health workforce who are skilled and allowed to screen TB. Deep learning neural networks (DLNNs) have shown potential in the TB screening process utilizing chest radiographs (CXRs). However, local studies on AIbased TB screening are limited. This study evaluated qXR3.0 technology's diagnostic performance for TB screening in Filipino adults aged 15 and older. Specifically, we evaluated the specificity and sensitivity of qXR3.0 compared to radiologists' impressions and determined whether it meets the World Health Organization (WHO) standards.
Methods:
A prospective cohort design was used to perform a study on comparing screening and diagnostic accuracies of qXR3.0 and two radiologist gradings in accordance with the Standards for Reporting Diagnostic Accuracy (STARD). Subjects from two clinics in Metro Manila which had qXR 3.0 seeking consultation at the time of study were invited to participate to have CXRs and sputum collected. Radiologists' and qXR3.0 readings and impressions were compared with respect to the reference standard Xpert MTB/RiF assay. Diagnostic accuracy measures were calculated.
Results:
With 82 participants, qXR3.0 demonstrated 100% sensitivity and 72.7% specificity with respect to the
reference standard. There was a strong agreement between qXR3.0 and radiologists' readings as exhibited by
the 0.7895 (between qXR 3.0 and CXRs read by at least one radiologist), 0.9362 (qXR 3.0 and CXRs read by both
radiologists), and 0.9403 (qXR 3.0 and CXRs read as not suggestive of TB by at least one radiologist) concordance indices.
Conclusions
qXR3.0 demonstrated high sensitivity to identify presence of TB among patients, and meets the WHO standard of at least 70% specificity for detecting true TB infection. This shows an immense potential for the tool to supplement the shortage of radiologists for TB screening in the country. Future research directions may consider larger sample sizes to confirm these findings and explore the economic value of mainstream adoption of qXR 3.0 for TB screening.
Tuberculosis
;
Diagnostic Imaging
;
Deep Learning
3.SPECT-MPI for Coronary Artery Disease: A deep learning approach
Vincent Peter C. Magboo ; Ma. Sheila A. Magboo
Acta Medica Philippina 2024;58(8):67-75
Background:
Worldwide, coronary artery disease (CAD) is a leading cause of mortality and morbidity and remains to be a top health priority in many countries. A non-invasive imaging modality for diagnosis of CAD such as single photon emission computed tomography-myocardial perfusion imaging (SPECT-MPI) is usually requested by cardiologists as it displays radiotracer distribution in the heart reflecting myocardial perfusion. The interpretation of SPECT-MPI is done visually by a nuclear medicine physician and is largely dependent on his clinical experience and showing significant inter-observer variability.
Objective:
The aim of the study is to apply a deep learning approach in the classification of SPECT-MPI for perfusion abnormalities using convolutional neural networks (CNN).
Methods:
A publicly available anonymized SPECT-MPI from a machine learning repository (https://www.kaggle.com/ selcankaplan/spect-mpi) was used in this study involving 192 patients who underwent stress-test-rest Tc99m MPI. An exploratory approach of CNN hyperparameter selection to search for optimum neural network model was utilized with particular focus on various dropouts (0.2, 0.5, 0.7), batch sizes (8, 16, 32, 64), and number of dense nodes (32, 64, 128, 256). The base CNN model was also compared with the commonly used pre-trained CNNs in medical images such as VGG16, InceptionV3, DenseNet121 and ResNet50. All simulations experiments were performed in Kaggle using TensorFlow 2.6.0., Keras 2.6.0, and Python language 3.7.10.
Results:
The best performing base CNN model with parameters consisting of 0.7 dropout, batch size 8, and 32 dense nodes generated the highest normalized Matthews Correlation Coefficient at 0.909 and obtained 93.75% accuracy, 96.00% sensitivity, 96.00% precision, and 96.00% F1-score. It also obtained higher classification performance as compared to the pre-trained architectures.
Conclusions
The results suggest that deep learning approaches through the use of CNN models can be deployed by nuclear medicine physicians in their clinical practice to further augment their decision skills in the interpretation of SPECT-MPI tests. These CNN models can also be used as a dependable and valid second opinion that can aid physicians as a decision-support tool as well as serve as teaching or learning materials for the less-experienced physicians particularly those still in their training career. These highlights the clinical utility of deep learning approaches through CNN models in the practice of nuclear cardiology.
Coronary Artery Disease
;
Deep Learning
4.Deep learning-based radiomics allows for a more accurate assessment of sarcopenia as a prognostic factor in hepatocellular carcinoma.
Zhikun LIU ; Yichao WU ; Abid Ali KHAN ; L U LUN ; Jianguo WANG ; Jun CHEN ; Ningyang JIA ; Shusen ZHENG ; Xiao XU
Journal of Zhejiang University. Science. B 2024;25(1):83-90
Hepatocellular carcinoma (HCC) is one of the most common malignancies and is a major cause of cancer-related mortalities worldwide (Forner et al., 2018; He et al., 2023). Sarcopenia is a syndrome characterized by an accelerated loss of skeletal muscle (SM) mass that may be age-related or the result of malnutrition in cancer patients (Cruz-Jentoft and Sayer, 2019). Preoperative sarcopenia in HCC patients treated with hepatectomy or liver transplantation is an independent risk factor for poor survival (Voron et al., 2015; van Vugt et al., 2016). Previous studies have used various criteria to define sarcopenia, including muscle area and density. However, the lack of standardized diagnostic methods for sarcopenia limits their clinical use. In 2018, the European Working Group on Sarcopenia in Older People (EWGSOP) renewed a consensus on the definition of sarcopenia: low muscle strength, loss of muscle quantity, and poor physical performance (Cruz-Jentoft et al., 2019). Radiological imaging-based measurement of muscle quantity or mass is most commonly used to evaluate the degree of sarcopenia. The gold standard is to measure the SM and/or psoas muscle (PM) area using abdominal computed tomography (CT) at the third lumbar vertebra (L3), as it is linearly correlated to whole-body SM mass (van Vugt et al., 2016). According to a "North American Expert Opinion Statement on Sarcopenia," SM index (SMI) is the preferred measure of sarcopenia (Carey et al., 2019). The variability between morphometric muscle indexes revealed that they have different clinical relevance and are generally not applicable to broader populations (Esser et al., 2019).
Humans
;
Aged
;
Sarcopenia/diagnostic imaging*
;
Carcinoma, Hepatocellular/diagnostic imaging*
;
Muscle, Skeletal/diagnostic imaging*
;
Deep Learning
;
Prognosis
;
Radiomics
;
Liver Neoplasms/diagnostic imaging*
;
Retrospective Studies
5.The impact of anatomic racial variations on artificial intelligence analysis of Filipino retinal fundus photographs using an image-based deep learning model
Carlo A. Kasala ; Kaye Lani Rea B. Locaylocay ; Paolo S. Silva
Philippine Journal of Ophthalmology 2024;49(2):130-137
OBJECTIVES
This study evaluated the accuracy of an artificial intelligence (AI) model in identifying retinal lesions, validated its performance on a Filipino population dataset, and evaluated the impact of dataset diversity on AI analysis accuracy.
METHODSThis cross-sectional, analytical, institutional study analyzed standardized macula-centered fundus photos taken with the Zeiss Visucam®. The AI model’s output was compared with manual readings by trained retina specialists.
RESULTSA total of 215 eyes from 109 patients were included in the study. Human graders identified 109 eyes (50.7%) with retinal abnormalities. The AI model demonstrated an overall accuracy of 73.0% (95% CI 66.6% – 78.8%) in detecting abnormal retinas, with a sensitivity of 54.1% (95% CI 44.3% – 63.7%) and specificity of 92.5% (95% CI 85.7% – 96.7%).
CONCLUSIONThe availability and sources of AI training datasets can introduce biases into AI algorithms. In our dataset, racial differences in retinal morphology, such as differences in retinal pigmentation, affected the accuracy of AI image-based analysis. More diverse datasets and external validation on different populations are needed to mitigate these biases.
Human ; Artificial Intelligence ; Deep Learning
6.Machine and deep learning-based clinical characteristics and laboratory markers for the prediction of sarcopenia.
He ZHANG ; Mengting YIN ; Qianhui LIU ; Fei DING ; Lisha HOU ; Yiping DENG ; Tao CUI ; Yixian HAN ; Weiguang PANG ; Wenbin YE ; Jirong YUE ; Yong HE
Chinese Medical Journal 2023;136(8):967-973
BACKGROUND:
Sarcopenia is an age-related progressive skeletal muscle disorder involving the loss of muscle mass or strength and physiological function. Efficient and precise AI algorithms may play a significant role in the diagnosis of sarcopenia. In this study, we aimed to develop a machine learning model for sarcopenia diagnosis using clinical characteristics and laboratory indicators of aging cohorts.
METHODS:
We developed models of sarcopenia using the baseline data from the West China Health and Aging Trend (WCHAT) study. For external validation, we used the Xiamen Aging Trend (XMAT) cohort. We compared the support vector machine (SVM), random forest (RF), eXtreme Gradient Boosting (XGB), and Wide and Deep (W&D) models. The area under the receiver operating curve (AUC) and accuracy (ACC) were used to evaluate the diagnostic efficiency of the models.
RESULTS:
The WCHAT cohort, which included a total of 4057 participants for the training and testing datasets, and the XMAT cohort, which consisted of 553 participants for the external validation dataset, were enrolled in this study. Among the four models, W&D had the best performance (AUC = 0.916 ± 0.006, ACC = 0.882 ± 0.006), followed by SVM (AUC =0.907 ± 0.004, ACC = 0.877 ± 0.006), XGB (AUC = 0.877 ± 0.005, ACC = 0.868 ± 0.005), and RF (AUC = 0.843 ± 0.031, ACC = 0.836 ± 0.024) in the training dataset. Meanwhile, in the testing dataset, the diagnostic efficiency of the models from large to small was W&D (AUC = 0.881, ACC = 0.862), XGB (AUC = 0.858, ACC = 0.861), RF (AUC = 0.843, ACC = 0.836), and SVM (AUC = 0.829, ACC = 0.857). In the external validation dataset, the performance of W&D (AUC = 0.970, ACC = 0.911) was the best among the four models, followed by RF (AUC = 0.830, ACC = 0.769), SVM (AUC = 0.766, ACC = 0.738), and XGB (AUC = 0.722, ACC = 0.749).
CONCLUSIONS:
The W&D model not only had excellent diagnostic performance for sarcopenia but also showed good economic efficiency and timeliness. It could be widely used in primary health care institutions or developing areas with an aging population.
TRIAL REGISTRATION
Chictr.org, ChiCTR 1800018895.
Humans
;
Aged
;
Sarcopenia/diagnosis*
;
Deep Learning
;
Aging
;
Algorithms
;
Biomarkers
7.Platelet RNA signature independently predicts ovarian cancer prognosis by deep learning neural network model.
Chun-Jie LIU ; Hua-Yi LI ; Yue GAO ; Gui-Yan XIE ; Jian-Hua CHI ; Gui-Ling LI ; Shao-Qing ZENG ; Xiao-Ming XIONG ; Jia-Hao LIU ; Lin-Li SHI ; Xiong LI ; Xiao-Dong CHENG ; Kun SONG ; Ding MA ; An-Yuan GUO ; Qing-Lei GAO
Protein & Cell 2023;14(8):618-622
8.Deep learning method for magnetic resonance imaging fluid-attenuated inversion recovery image synthesis.
Jianing ZHOU ; Hongyu GUO ; Hong CHEN
Journal of Biomedical Engineering 2023;40(5):903-911
Magnetic resonance imaging(MRI) can obtain multi-modal images with different contrast, which provides rich information for clinical diagnosis. However, some contrast images are not scanned or the quality of the acquired images cannot meet the diagnostic requirements due to the difficulty of patient's cooperation or the limitation of scanning conditions. Image synthesis techniques have become a method to compensate for such image deficiencies. In recent years, deep learning has been widely used in the field of MRI synthesis. In this paper, a synthesis network based on multi-modal fusion is proposed, which firstly uses a feature encoder to encode the features of multiple unimodal images separately, and then fuses the features of different modal images through a feature fusion module, and finally generates the target modal image. The similarity measure between the target image and the predicted image in the network is improved by introducing a dynamic weighted combined loss function based on the spatial domain and K-space domain. After experimental validation and quantitative comparison, the multi-modal fusion deep learning network proposed in this paper can effectively synthesize high-quality MRI fluid-attenuated inversion recovery (FLAIR) images. In summary, the method proposed in this paper can reduce MRI scanning time of the patient, as well as solve the clinical problem of missing FLAIR images or image quality that is difficult to meet diagnostic requirements.
Humans
;
Deep Learning
;
Magnetic Resonance Imaging/methods*
;
Image Processing, Computer-Assisted/methods*
9.Review on ultrasonographic diagnosis of thyroid diseases based on deep learning.
Fengyuan QI ; Min QIU ; Guohui WEI
Journal of Biomedical Engineering 2023;40(5):1027-1032
In recent years, the incidence of thyroid diseases has increased significantly and ultrasound examination is the first choice for the diagnosis of thyroid diseases. At the same time, the level of medical image analysis based on deep learning has been rapidly improved. Ultrasonic image analysis has made a series of milestone breakthroughs, and deep learning algorithms have shown strong performance in the field of medical image segmentation and classification. This article first elaborates on the application of deep learning algorithms in thyroid ultrasound image segmentation, feature extraction, and classification differentiation. Secondly, it summarizes the algorithms for deep learning processing multimodal ultrasound images. Finally, it points out the problems in thyroid ultrasound image diagnosis at the current stage and looks forward to future development directions. This study can promote the application of deep learning in clinical ultrasound image diagnosis of thyroid, and provide reference for doctors to diagnose thyroid disease.
Humans
;
Algorithms
;
Deep Learning
;
Image Processing, Computer-Assisted/methods*
;
Thyroid Diseases/diagnostic imaging*
;
Ultrasonography
10.Metal artifact reduction and clinical verification in oral and maxillofacial region based on deep learning.
Wei ZENG ; Shan Luo ZHOU ; Ji Xiang GUO ; Wei TANG
Chinese Journal of Stomatology 2023;58(6):540-546
Objective: To construct a kind of neural network for eliminating the metal artifacts in CT images by training the generative adversarial networks (GAN) model, so as to provide reference for clinical practice. Methods: The CT data of patients treated in the Department of Radiology, West China Hospital of Stomatology, Sichuan University from January 2017 to June 2022 were collected. A total of 1 000 cases of artifact-free CT data and 620 cases of metal artifact CT data were obtained, including 5 types of metal restorative materials, namely, fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies. Four hundred metal artifact CT data and 1 000 artifact-free CT data were utilized for simulation synthesis, and 1 000 pairs of simulated artifacts and metal images and simulated metal images (200 pairs of each type) were constructed. Under the condition that the data of the five metal artifacts were equal, the entire data set was randomly (computer random) divided into a training set (800 pairs) and a test set (200 pairs). The former was used to train the GAN model, and the latter was used to evaluate the performance of the GAN model. The test set was evaluated quantitatively and the quantitative indexes were root-mean-square error (RMSE) and structural similarity index measure (SSIM). The trained GAN model was employed to eliminate the metal artifacts from the CT data of the remaining 220 clinical cases of metal artifact CT data, and the elimination results were evaluated by two senior attending doctors using the modified LiKert scale. Results: The RMSE values for artifact elimination of fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies in test set were 0.018±0.004, 0.023±0.007, 0.015±0.003, 0.019±0.004, 0.024±0.008, respectively (F=1.29, P=0.274). The SSIM values were 0.963±0.023, 0.961±0.023, 0.965±0.013, 0.958±0.022, 0.957±0.026, respectively (F=2.22, P=0.069). The intra-group correlation coefficient of 2 evaluators was 0.972. For 220 clinical cases, the overall score of the modified LiKert scale was (3.73±1.13), indicating a satisfactory performance. The scores of modified LiKert scale for fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies were (3.68±1.13), (3.67±1.16), (3.97±1.03), (3.83±1.14), (3.33±1.12), respectively (F=1.44, P=0.145). Conclusions: The metal artifact reduction GAN model constructed in this study can effectively remove the interference of metal artifacts and improve the image quality.
Humans
;
Tomography, X-Ray Computed/methods*
;
Deep Learning
;
Titanium
;
Neural Networks, Computer
;
Metals
;
Image Processing, Computer-Assisted/methods*
;
Algorithms


Result Analysis
Print
Save
E-mail