1.Diagnostic performance of a computer-aided system for tuberculosis screening in two Philippine cities
Gabrielle P. Flores ; Reiner Lorenzo J. Tamao ; Robert Neil F. Leong ; Christian Sergio M. Biglaen ; Kathleen Nicole T. Uy ; Renee Rose O. Maglente ; Marlex Jorome M. Nuguid ; Jason V. Alacap
Acta Medica Philippina 2025;59(2):33-40
BACKGROUND AND OBJECTIVES
The Philippines faces challenges in the screening of tuberculosis (TB), one of them being the shortage in the health workforce who are skilled and allowed to screen TB. Deep learning neural networks (DLNNs) have shown potential in the TB screening process utilizing chest radiographs (CXRs). However, local studies on AIbased TB screening are limited. This study evaluated qXR3.0 technology's diagnostic performance for TB screening in Filipino adults aged 15 and older. Specifically, we evaluated the specificity and sensitivity of qXR3.0 compared to radiologists' impressions and determined whether it meets the World Health Organization (WHO) standards.
METHODSA prospective cohort design was used to perform a study on comparing screening and diagnostic accuracies of qXR3.0 and two radiologist gradings in accordance with the Standards for Reporting Diagnostic Accuracy (STARD). Subjects from two clinics in Metro Manila which had qXR 3.0 seeking consultation at the time of study were invited to participate to have CXRs and sputum collected. Radiologists' and qXR3.0 readings and impressions were compared with respect to the reference standard Xpert MTB/RiF assay. Diagnostic accuracy measures were calculated.
RESULTSWith 82 participants, qXR3.0 demonstrated 100% sensitivity and 72.7% specificity with respect to the reference standard. There was a strong agreement between qXR3.0 and radiologists' readings as exhibited by the 0.7895 (between qXR 3.0 and CXRs read by at least one radiologist), 0.9362 (qXR 3.0 and CXRs read by both radiologists), and 0.9403 (qXR 3.0 and CXRs read as not suggestive of TB by at least one radiologist) concordance indices.
CONCLUSIONSqXR3.0 demonstrated high sensitivity to identify presence of TB among patients, and meets the WHO standard of at least 70% specificity for detecting true TB infection. This shows an immense potential for the tool to supplement the shortage of radiologists for TB screening in the country. Future research directions may consider larger sample sizes to confirm these findings and explore the economic value of mainstream adoption of qXR 3.0 for TB screening.
Human ; Tuberculosis ; Diagnostic Imaging ; Deep Learning
2.Diagnostic performance of a computer-aided system for tuberculosis screening in two Philippine cities
Gabrielle P. Flores ; Reiner Lorenzo J. Tamayo ; Robert Neil F. Leong ; Christian Sergio M. Biglaen ; Kathleen Nicole T. Uy ; Renee Rose O. Maglente ; Marlex Jorome M. Nugui ; Jason V. Alacap
Acta Medica Philippina 2024;58(Early Access 2024):1-8
Background and Objectives:
The Philippines faces challenges in the screening of tuberculosis (TB), one of them being the shortage in the health workforce who are skilled and allowed to screen TB. Deep learning neural networks (DLNNs) have shown potential in the TB screening process utilizing chest radiographs (CXRs). However, local studies on AIbased TB screening are limited. This study evaluated qXR3.0 technology's diagnostic performance for TB screening in Filipino adults aged 15 and older. Specifically, we evaluated the specificity and sensitivity of qXR3.0 compared to radiologists' impressions and determined whether it meets the World Health Organization (WHO) standards.
Methods:
A prospective cohort design was used to perform a study on comparing screening and diagnostic accuracies of qXR3.0 and two radiologist gradings in accordance with the Standards for Reporting Diagnostic Accuracy (STARD). Subjects from two clinics in Metro Manila which had qXR 3.0 seeking consultation at the time of study were invited to participate to have CXRs and sputum collected. Radiologists' and qXR3.0 readings and impressions were compared with respect to the reference standard Xpert MTB/RiF assay. Diagnostic accuracy measures were calculated.
Results:
With 82 participants, qXR3.0 demonstrated 100% sensitivity and 72.7% specificity with respect to the
reference standard. There was a strong agreement between qXR3.0 and radiologists' readings as exhibited by
the 0.7895 (between qXR 3.0 and CXRs read by at least one radiologist), 0.9362 (qXR 3.0 and CXRs read by both
radiologists), and 0.9403 (qXR 3.0 and CXRs read as not suggestive of TB by at least one radiologist) concordance indices.
Conclusions
qXR3.0 demonstrated high sensitivity to identify presence of TB among patients, and meets the WHO standard of at least 70% specificity for detecting true TB infection. This shows an immense potential for the tool to supplement the shortage of radiologists for TB screening in the country. Future research directions may consider larger sample sizes to confirm these findings and explore the economic value of mainstream adoption of qXR 3.0 for TB screening.
Tuberculosis
;
Diagnostic Imaging
;
Deep Learning
3.Deep learning-based radiomics allows for a more accurate assessment of sarcopenia as a prognostic factor in hepatocellular carcinoma.
Zhikun LIU ; Yichao WU ; Abid Ali KHAN ; L U LUN ; Jianguo WANG ; Jun CHEN ; Ningyang JIA ; Shusen ZHENG ; Xiao XU
Journal of Zhejiang University. Science. B 2024;25(1):83-90
Hepatocellular carcinoma (HCC) is one of the most common malignancies and is a major cause of cancer-related mortalities worldwide (Forner et al., 2018; He et al., 2023). Sarcopenia is a syndrome characterized by an accelerated loss of skeletal muscle (SM) mass that may be age-related or the result of malnutrition in cancer patients (Cruz-Jentoft and Sayer, 2019). Preoperative sarcopenia in HCC patients treated with hepatectomy or liver transplantation is an independent risk factor for poor survival (Voron et al., 2015; van Vugt et al., 2016). Previous studies have used various criteria to define sarcopenia, including muscle area and density. However, the lack of standardized diagnostic methods for sarcopenia limits their clinical use. In 2018, the European Working Group on Sarcopenia in Older People (EWGSOP) renewed a consensus on the definition of sarcopenia: low muscle strength, loss of muscle quantity, and poor physical performance (Cruz-Jentoft et al., 2019). Radiological imaging-based measurement of muscle quantity or mass is most commonly used to evaluate the degree of sarcopenia. The gold standard is to measure the SM and/or psoas muscle (PM) area using abdominal computed tomography (CT) at the third lumbar vertebra (L3), as it is linearly correlated to whole-body SM mass (van Vugt et al., 2016). According to a "North American Expert Opinion Statement on Sarcopenia," SM index (SMI) is the preferred measure of sarcopenia (Carey et al., 2019). The variability between morphometric muscle indexes revealed that they have different clinical relevance and are generally not applicable to broader populations (Esser et al., 2019).
Humans
;
Aged
;
Sarcopenia/diagnostic imaging*
;
Carcinoma, Hepatocellular/diagnostic imaging*
;
Muscle, Skeletal/diagnostic imaging*
;
Deep Learning
;
Prognosis
;
Radiomics
;
Liver Neoplasms/diagnostic imaging*
;
Retrospective Studies
4.SPECT-MPI for Coronary Artery Disease: A deep learning approach
Vincent Peter C. Magboo ; Ma. Sheila A. Magboo
Acta Medica Philippina 2024;58(8):67-75
Background:
Worldwide, coronary artery disease (CAD) is a leading cause of mortality and morbidity and remains to be a top health priority in many countries. A non-invasive imaging modality for diagnosis of CAD such as single photon emission computed tomography-myocardial perfusion imaging (SPECT-MPI) is usually requested by cardiologists as it displays radiotracer distribution in the heart reflecting myocardial perfusion. The interpretation of SPECT-MPI is done visually by a nuclear medicine physician and is largely dependent on his clinical experience and showing significant inter-observer variability.
Objective:
The aim of the study is to apply a deep learning approach in the classification of SPECT-MPI for perfusion abnormalities using convolutional neural networks (CNN).
Methods:
A publicly available anonymized SPECT-MPI from a machine learning repository (https://www.kaggle.com/ selcankaplan/spect-mpi) was used in this study involving 192 patients who underwent stress-test-rest Tc99m MPI. An exploratory approach of CNN hyperparameter selection to search for optimum neural network model was utilized with particular focus on various dropouts (0.2, 0.5, 0.7), batch sizes (8, 16, 32, 64), and number of dense nodes (32, 64, 128, 256). The base CNN model was also compared with the commonly used pre-trained CNNs in medical images such as VGG16, InceptionV3, DenseNet121 and ResNet50. All simulations experiments were performed in Kaggle using TensorFlow 2.6.0., Keras 2.6.0, and Python language 3.7.10.
Results:
The best performing base CNN model with parameters consisting of 0.7 dropout, batch size 8, and 32 dense nodes generated the highest normalized Matthews Correlation Coefficient at 0.909 and obtained 93.75% accuracy, 96.00% sensitivity, 96.00% precision, and 96.00% F1-score. It also obtained higher classification performance as compared to the pre-trained architectures.
Conclusions
The results suggest that deep learning approaches through the use of CNN models can be deployed by nuclear medicine physicians in their clinical practice to further augment their decision skills in the interpretation of SPECT-MPI tests. These CNN models can also be used as a dependable and valid second opinion that can aid physicians as a decision-support tool as well as serve as teaching or learning materials for the less-experienced physicians particularly those still in their training career. These highlights the clinical utility of deep learning approaches through CNN models in the practice of nuclear cardiology.
Coronary Artery Disease
;
Deep Learning
5.The impact of anatomic racial variations on artificial intelligence analysis of Filipino retinal fundus photographs using an image-based deep learning model
Carlo A. Kasala ; Kaye Lani Rea B. Locaylocay ; Paolo S. Silva
Philippine Journal of Ophthalmology 2024;49(2):130-137
OBJECTIVES
This study evaluated the accuracy of an artificial intelligence (AI) model in identifying retinal lesions, validated its performance on a Filipino population dataset, and evaluated the impact of dataset diversity on AI analysis accuracy.
METHODSThis cross-sectional, analytical, institutional study analyzed standardized macula-centered fundus photos taken with the Zeiss Visucam®. The AI model’s output was compared with manual readings by trained retina specialists.
RESULTSA total of 215 eyes from 109 patients were included in the study. Human graders identified 109 eyes (50.7%) with retinal abnormalities. The AI model demonstrated an overall accuracy of 73.0% (95% CI 66.6% – 78.8%) in detecting abnormal retinas, with a sensitivity of 54.1% (95% CI 44.3% – 63.7%) and specificity of 92.5% (95% CI 85.7% – 96.7%).
CONCLUSIONThe availability and sources of AI training datasets can introduce biases into AI algorithms. In our dataset, racial differences in retinal morphology, such as differences in retinal pigmentation, affected the accuracy of AI image-based analysis. More diverse datasets and external validation on different populations are needed to mitigate these biases.
Human ; Artificial Intelligence ; Deep Learning
6.Deep learning-based dose prediction in radiotherapy planning for head and neck cancer.
Lin TENG ; Bin WANG ; Qianjin FENG
Journal of Southern Medical University 2023;43(6):1010-1016
OBJECTIVE:
To propose an deep learning-based algorithm for automatic prediction of dose distribution in radiotherapy planning for head and neck cancer.
METHODS:
We propose a novel beam dose decomposition learning (BDDL) method designed on a cascade network. The delivery matter of beam through the planning target volume (PTV) was fitted with the pre-defined beam angles, which served as an input to the convolution neural network (CNN). The output of the network was decomposed into multiple sub-fractions of dose distribution along the beam directions to carry out a complex task by performing multiple simpler sub-tasks, thus allowing the model more focused on extracting the local features. The subfractions of dose distribution map were merged into a distribution map using the proposed multi-voting mechanism. We also introduced dose distribution features of the regions-of-interest (ROIs) and boundary map as the loss function during the training phase to serve as constraining factors of the network when extracting features of the ROIs and areas of dose boundary. Public datasets of radiotherapy planning for head and neck cancer were used for obtaining the accuracy of dose distribution of the BDDL method and for implementing the ablation study of the proposed method.
RESULTS:
The BDDL method achieved a Dose score of 2.166 and a DVH score of 1.178 (P < 0.05), demonstrating its superior prediction accuracy to that of current state-ofthe-art (SOTA) methods. Compared with the C3D method, which was in the first place in OpenKBP-2020 Challenge, the BDDL method improved the Dose score and DVH score by 26.3% and 30%, respectively. The results of the ablation study also demonstrated the effectiveness of each key component of the BDDL method.
CONCLUSION
The BDDL method utilizes the prior knowledge of the delivery matter of beam and dose distribution in the ROIs to establish a dose prediction model. Compared with the existing methods, the proposed method is interpretable and reliable and can be potentially applied in clinical radiotherapy.
Humans
;
Deep Learning
;
Head and Neck Neoplasms/radiotherapy*
;
Algorithms
;
Neural Networks, Computer
7.Advances in heart failure clinical research based on deep learning.
Yingpeng LEI ; Siru LIU ; Yuxuan WU ; Chuan LI ; Jialin LIU
Journal of Biomedical Engineering 2023;40(2):373-377
Heart failure is a disease that seriously threatens human health and has become a global public health problem. Diagnostic and prognostic analysis of heart failure based on medical imaging and clinical data can reveal the progression of heart failure and reduce the risk of death of patients, which has important research value. The traditional analysis methods based on statistics and machine learning have some problems, such as insufficient model capability, poor accuracy due to prior dependence, and poor model adaptability. In recent years, with the development of artificial intelligence technology, deep learning has been gradually applied to clinical data analysis in the field of heart failure, showing a new perspective. This paper reviews the main progress, application methods and major achievements of deep learning in heart failure diagnosis, heart failure mortality and heart failure readmission, summarizes the existing problems and presents the prospects of related research to promote the clinical application of deep learning in heart failure clinical research.
Humans
;
Artificial Intelligence
;
Deep Learning
;
Heart Failure/diagnosis*
;
Machine Learning
;
Diagnostic Imaging
8.Sex Estimation of Medial Aspect of the Ischiopubic Ramus in Adults Based on Deep Learning.
Yong-Gang MA ; Yong-Jie CAO ; Yi-Hua ZHAO ; Xin-Jun ZHOU ; Bin HUANG ; Gao-Chao ZHANG ; Ping HUANG ; Ya-Hui WANG ; Kai-Jun MA ; Feng CHEN ; Dong-Chuan ZHANG ; Ji ZHANG
Journal of Forensic Medicine 2023;39(2):129-136
OBJECTIVES:
To investigate the reliability and accuracy of deep learning technology in automatic sex estimation using the 3D reconstructed images of the computed tomography (CT) from the Chinese Han population.
METHODS:
The pelvic CT images of 700 individuals (350 males and 350 females) of the Chinese Han population aged 20 to 85 years were collected and reconstructed into 3D virtual skeletal models. The feature region images of the medial aspect of the ischiopubic ramus (MIPR) were intercepted. The Inception v4 was adopted as the image recognition model, and two methods of initial learning and transfer learning were used for training. Eighty percent of the individuals' images were randomly selected as the training and validation dataset, and the remaining were used as the test dataset. The left and right sides of the MIPR images were trained separately and combinedly. Subsequently, the models' performance was evaluated by overall accuracy, female accuracy, male accuracy, etc.
RESULTS:
When both sides of the MIPR images were trained separately with initial learning, the overall accuracy of the right model was 95.7%, the female accuracy and male accuracy were both 95.7%; the overall accuracy of the left model was 92.1%, the female accuracy was 88.6% and the male accuracy was 95.7%. When the left and right MIPR images were combined to train with initial learning, the overall accuracy of the model was 94.6%, the female accuracy was 92.1% and the male accuracy was 97.1%. When the left and right MIPR images were combined to train with transfer learning, the model achieved an overall accuracy of 95.7%, and the female and male accuracies were both 95.7%.
CONCLUSIONS
The use of deep learning model of Inception v4 and transfer learning algorithm to construct a sex estimation model for pelvic MIPR images of Chinese Han population has high accuracy and well generalizability in human remains, which can effectively estimate the sex in adults.
Adult
;
Female
;
Humans
;
Male
;
Deep Learning
;
Imaging, Three-Dimensional
;
Pelvis
;
Reproducibility of Results
;
Tomography, X-Ray Computed
;
Young Adult
;
Middle Aged
;
Aged
;
Aged, 80 and over
9.Noninvasive Tracking of Every Individual in Unmarked Mouse Groups Using Multi-Camera Fusion and Deep Learning.
Feng SU ; Yangzhen WANG ; Mengping WEI ; Chong WANG ; Shaoli WANG ; Lei YANG ; Jianmin LI ; Peijiang YUAN ; Dong-Gen LUO ; Chen ZHANG
Neuroscience Bulletin 2023;39(6):893-910
Accurate and efficient methods for identifying and tracking each animal in a group are needed to study complex behaviors and social interactions. Traditional tracking methods (e.g., marking each animal with dye or surgically implanting microchips) can be invasive and may have an impact on the social behavior being measured. To overcome these shortcomings, video-based methods for tracking unmarked animals, such as fruit flies and zebrafish, have been developed. However, tracking individual mice in a group remains a challenging problem because of their flexible body and complicated interaction patterns. In this study, we report the development of a multi-object tracker for mice that uses the Faster region-based convolutional neural network (R-CNN) deep learning algorithm with geometric transformations in combination with multi-camera/multi-image fusion technology. The system successfully tracked every individual in groups of unmarked mice and was applied to investigate chasing behavior. The proposed system constitutes a step forward in the noninvasive tracking of individual mice engaged in social behavior.
Animals
;
Mice
;
Deep Learning
;
Zebrafish
;
Algorithms
;
Neural Networks, Computer
;
Social Behavior
10.Metal artifact reduction and clinical verification in oral and maxillofacial region based on deep learning.
Wei ZENG ; Shan Luo ZHOU ; Ji Xiang GUO ; Wei TANG
Chinese Journal of Stomatology 2023;58(6):540-546
Objective: To construct a kind of neural network for eliminating the metal artifacts in CT images by training the generative adversarial networks (GAN) model, so as to provide reference for clinical practice. Methods: The CT data of patients treated in the Department of Radiology, West China Hospital of Stomatology, Sichuan University from January 2017 to June 2022 were collected. A total of 1 000 cases of artifact-free CT data and 620 cases of metal artifact CT data were obtained, including 5 types of metal restorative materials, namely, fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies. Four hundred metal artifact CT data and 1 000 artifact-free CT data were utilized for simulation synthesis, and 1 000 pairs of simulated artifacts and metal images and simulated metal images (200 pairs of each type) were constructed. Under the condition that the data of the five metal artifacts were equal, the entire data set was randomly (computer random) divided into a training set (800 pairs) and a test set (200 pairs). The former was used to train the GAN model, and the latter was used to evaluate the performance of the GAN model. The test set was evaluated quantitatively and the quantitative indexes were root-mean-square error (RMSE) and structural similarity index measure (SSIM). The trained GAN model was employed to eliminate the metal artifacts from the CT data of the remaining 220 clinical cases of metal artifact CT data, and the elimination results were evaluated by two senior attending doctors using the modified LiKert scale. Results: The RMSE values for artifact elimination of fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies in test set were 0.018±0.004, 0.023±0.007, 0.015±0.003, 0.019±0.004, 0.024±0.008, respectively (F=1.29, P=0.274). The SSIM values were 0.963±0.023, 0.961±0.023, 0.965±0.013, 0.958±0.022, 0.957±0.026, respectively (F=2.22, P=0.069). The intra-group correlation coefficient of 2 evaluators was 0.972. For 220 clinical cases, the overall score of the modified LiKert scale was (3.73±1.13), indicating a satisfactory performance. The scores of modified LiKert scale for fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies were (3.68±1.13), (3.67±1.16), (3.97±1.03), (3.83±1.14), (3.33±1.12), respectively (F=1.44, P=0.145). Conclusions: The metal artifact reduction GAN model constructed in this study can effectively remove the interference of metal artifacts and improve the image quality.
Humans
;
Tomography, X-Ray Computed/methods*
;
Deep Learning
;
Titanium
;
Neural Networks, Computer
;
Metals
;
Image Processing, Computer-Assisted/methods*
;
Algorithms


Result Analysis
Print
Save
E-mail