1.Nucleopolyhedrovirus Introduction in Australia
Patrick BUERGER ; Caroline HAUXWELL ; David MURRAY
Virologica Sinica 2007;22(2):173-179
Nucleopolyhedrovirus (NPV) has become an integral part of integrated pest management (IPM) in many Australian agricultural and horticultural crops. This is the culmination of years of work conducted by researchers at the Queensland Department of Primary Industries and Fisheries (QDPI&F) and Ag Biotech Australia Pty Ltd. In the early 1970's researchers at QDPI&F identified and isolated a virus in Helicoverpa armigera populations in the field. This NPV was extensively studied and shown to be highly specific to Helicoverpa and Heliothis species. Further work showed that when used appropriately the virus could be used effectively to manage these insects in crops such as sorghum, cotton, chickpea and sweet corn. A similar virus was first commercially produced in the USA in the 1970's. This product, Elcar(R), was introduced into Australia in the late 1970's by Shell Chemicals with limited success. A major factor contributing to the poor adoption of Elcar was the concurrent enormous success of the synthetic pyrethroids. The importance of integrated pest management was probably also not widely accepted at that time. Gradual development of insect resistance to synthetic pyrethroids and other synthetic insecticides in Australia and the increased awareness of the importance of IPM meant that researchers once again turned their attentions to environmentally friendly pest management tools such NPV and beneficial insects. In the 1990's a company called Rhone-Poulenc registered an NPV for use in Australian sorghum, chickpea and cotton. This product, Gemstar(R), was imported from the USA. In 2000 Ag Biotech Australia established an in-vivo production facility in Australia to produce commercial volumes of a product similar to the imported product. This product was branded, ViVUS(R), and was first registered and sold commercially in Australia in 2003. The initial production of ViVUS used a virus identical to the American product but replicating it in an Australian Helicoverpa species, H. armigera. Subsequent research collaboration between QDPI&F and Ag Biotech reinvigorated interest in the local virus strain. This was purified and the production system adapted to produce it on a commercial scale. This new version of ViVUS, which was branded ViVUS Gold(R), was first registered and sold commercially in 2004. Widespread insect resistance to insecticides and a greater understanding of integrated pest management is leading to increased adoption of technologies such NPV in Australian agriculture.
2.Heat shock proteins and their role in early mammalian development.
David A WALSH ; Marshall J EDWARDS MJ ; Murray SR SMITH
Experimental & Molecular Medicine 1997;29(3):139-150
Elevated body temperature can result from many agents in the natural environment, such as fever, hot weather and heavy exercise. In our modern living conditions additional sources of induced hyperthermia including hot baths, saunas, drugs, electromagnetic radiation and ultrasound have been introduced. Hyperthermia during pregnancy has been shown to cause a wide spectrun of effects in art species studied, including humans, the outcome depending on the dose of heat absorbed by the mother and embryo and the stage of enbryonic or fetal development when exposed. The dose of heat is the product of the elevation of temperature above normal and the duration of the elevation. In relatively uncontrolled natural environmental exposures, embryonic death and resorption or abortion are probably the most common outcome. In less severe exposures (smaller doses) major or minor developmental defects can result and the central nervous system appears to be a major target for its effects. Heat damage to embryos appears to be by apoptotic and other forms of cell death in organs at critical stages of development. Over many millennia all living orgaisms appear to have developed protective mechanisms against excess heat, known collectively as the heat shock response. This response has been studied intensively over the last 20 years and its mechanisms of protection are now becoming more clearly defined. Exposures to heat (and a number of other toxic agents) trigger the heat shock response which is characterized by abrupt suspension in the normal protein synthesis and the concurrent induction of heat shock genes (hsp) and the synthesis of a set of protein families known collectively as the heat shock proteins (HSP). The hsp ape known to be involved in the response in embryos, each has at least two copies, one which appears to have functions in the normal embryonic development (cognate) and another which is induced at a certain dose of heat (induced) and which can offer some protection against damage for some time after the initiating dose. Most cognate HSP can normally be found in embryos at all stages of development. At certain critical, early stages of organ formation increased activity of one or more of the hsp families can be identified at the site of the organ analogue. The inducible HSP are usually undetectable during normal development and generally become inducible at these critical inductive stages of organ development, implying a protective function for that process. Excess heat is known to cause denaturation of proteins. Each of the known HSP families appears to protect cells through their chaperone functions in which they bind to adhesive sites on newly synthesized or heat damaged and partially unfolded structural and functional proteins. This prevents the formation of function-less aggregates. The damaged proteins are then either presented for degradation or are reconstituted by orderly disengagement from the chaperone protein. The molecular mechanisms of initiating and regulating the response are now becoming more clearly defined. Trigger mechanisms include release of prostaglandin Al which can be modulated by glucocorticoids and nonsteroidal anti-inflammatory agents. A heat shock factor (HSF) binds to the heat shock element (hse) on the gene sequence and initiates the hsp response. The signal induction pathway involves mitogen activated proteins (MAP) and stress activated proteins (SAP) which are regulated by phosphorylation. Signals are amplified by kinase cascades while they are being transmitted to the nucleus. Activated MAP and SAP kinases regulate the process by phosphorylation of proteins including transcription factors, HSP, other protein kinases and phosphorylases, growth factor receptors and cytoskeletal proteins. Although this research has defined some pathways indicating how and why heat can cause some defects, a means of preventing them has not yet emerged.
Adhesives
;
Anti-Inflammatory Agents, Non-Steroidal
;
Apoptosis
;
Baths
;
Body Temperature
;
Cell Cycle
;
Cell Death
;
Central Nervous System
;
Cytoskeletal Proteins
;
Electromagnetic Radiation
;
Embryonic Development
;
Embryonic Structures
;
Environmental Exposure
;
Female
;
Fetal Development
;
Fever
;
Glucocorticoids
;
Heat-Shock Proteins*
;
Heat-Shock Response
;
Hominidae
;
Hot Temperature*
;
Humans
;
Hyperthermia, Induced
;
Mothers
;
Phosphorylases
;
Phosphorylation
;
Phosphotransferases
;
Pregnancy
;
Protein Kinases
;
Receptors, Growth Factor
;
Shock
;
Social Conditions
;
Steam Bath
;
Transcription Factors
;
Ultrasonography
;
Weather
3.Postoperative nausea and vomiting in patients undergoing colorectal surgery within an institutional enhanced recovery after surgery protocol: comparison of two prophylactic antiemetic regimens
Jennifer HOLDER-MURRAY ; Stephen A ESPER ; Michael L BOISEN ; Julie GEALEY ; Katie MEISTER ; David S MEDICH ; Kathirvel SUBRAMANIAM
Korean Journal of Anesthesiology 2019;72(4):344-350
BACKGROUND: Enhanced recovery protocols (ERP) provide optimal perioperative care for surgical patients. Postoperative nausea and vomiting (PONV) is common after colorectal surgery (CRS). We aim to compare the efficacy of aprepitant to a cost-effective alternative, perphenazine, as components of triple antiemetic prophylaxis in ERP patients. METHODS: Patients who underwent ERP CRS at a single institution from July 2015 to July 2017 were evaluated retrospectively. Only subjects who received aprepitant (Group 1) or perphenazine (Group 2) preoperatively for PONV prophylaxis were included. Patient characteristics, simplified Apfel PONV scores, perioperative medications, and PONV incidence were compared between the groups. PONV was defined as the need for rescue antiemetics on postoperative days (POD) 0–5. RESULTS: Five hundred ninety-seven patients underwent CRS of which 498 met the inclusion criteria. Two hundred thirty-one (46.4%) received aprepitant and 267 (53.6%) received perphenazine. The incidence of early PONV (POD 0–1) was comparable between the two groups: 44.2% in Group 1 and 44.6% in Group 2 (P = 0.926). Late PONV (POD 2–5) occurred less often in Group 1 than Group 2, respectively (35.9% vs. 45.7%, P = 0.027). After matching the groups for preoperative, procedural, and anesthesia characteristics (164 pairs), no difference in early or late PONV could be demonstrated between the groups. CONCLUSIONS: The incidence of PONV remains high despite most patients receiving three prophylactic antiemetic medications. Perphenazine can be considered a cost-effective alternative to oral aprepitant for prophylaxis of PONV in patients undergoing CRS within an ERP.
Anesthesia
;
Antiemetics
;
Colectomy
;
Colorectal Surgery
;
Humans
;
Incidence
;
Perioperative Care
;
Perphenazine
;
Postoperative Nausea and Vomiting
;
Retrospective Studies
4.Postoperative nausea and vomiting in patients undergoing colorectal surgery within an institutional enhanced recovery after surgery protocol: comparison of two prophylactic antiemetic regimens
Jennifer HOLDER-MURRAY ; Stephen A ESPER ; Michael L BOISEN ; Julie GEALEY ; Katie MEISTER ; David S MEDICH ; Kathirvel SUBRAMANIAM
Korean Journal of Anesthesiology 2019;72(4):344-350
BACKGROUND:
Enhanced recovery protocols (ERP) provide optimal perioperative care for surgical patients. Postoperative nausea and vomiting (PONV) is common after colorectal surgery (CRS). We aim to compare the efficacy of aprepitant to a cost-effective alternative, perphenazine, as components of triple antiemetic prophylaxis in ERP patients.
METHODS:
Patients who underwent ERP CRS at a single institution from July 2015 to July 2017 were evaluated retrospectively. Only subjects who received aprepitant (Group 1) or perphenazine (Group 2) preoperatively for PONV prophylaxis were included. Patient characteristics, simplified Apfel PONV scores, perioperative medications, and PONV incidence were compared between the groups. PONV was defined as the need for rescue antiemetics on postoperative days (POD) 0–5.
RESULTS:
Five hundred ninety-seven patients underwent CRS of which 498 met the inclusion criteria. Two hundred thirty-one (46.4%) received aprepitant and 267 (53.6%) received perphenazine. The incidence of early PONV (POD 0–1) was comparable between the two groups: 44.2% in Group 1 and 44.6% in Group 2 (P = 0.926). Late PONV (POD 2–5) occurred less often in Group 1 than Group 2, respectively (35.9% vs. 45.7%, P = 0.027). After matching the groups for preoperative, procedural, and anesthesia characteristics (164 pairs), no difference in early or late PONV could be demonstrated between the groups.
CONCLUSIONS
The incidence of PONV remains high despite most patients receiving three prophylactic antiemetic medications. Perphenazine can be considered a cost-effective alternative to oral aprepitant for prophylaxis of PONV in patients undergoing CRS within an ERP.