1.Enhancement of Gastric Ulcer Healing and Angiogenesis by Hepatocyte Growth Factor Gene Mediated by Attenuated Salmonella in Rats.
Xiaoqin HA ; Junhua PENG ; Hongbin ZHAO ; Zhiyun DENG ; Juzi DONG ; Hongyan FAN ; Yong ZHAO ; Bing LI ; Qiangsheng FENG ; Zhihua YANG
Journal of Korean Medical Science 2017;32(2):186-194
The present study developed an oral hepatocyte growth factor (HGF) gene therapy strategy for gastric ulcers treatment. An attenuated Salmonella typhimurium that stably expressed high HGF (named as TPH) was constructed, and the antiulcerogenic effect of TPH was evaluated in a rat model of gastric ulcers that created by acetic acid subserosal injection. From day 5 after injection, TPH (1 × 10⁹ cfu), vehicle (TP, 1 × 10⁹ cfu), or sodium bicarbonate (model control) was administered orally every alternate day for three times. Then ulcer size was measured at day 21 after ulcer induction. The ulcer area in TPH-treated group was 10.56 ± 3.30 mm², which was smaller when compared with those in the TP-treated and model control groups (43.47 ± 4.18 and 56.25 ± 6.38 mm², respectively). A higher level of reepithelialization was found in TPH-treated group and the crawling length of gastric epithelial cells was significantly longer than in the other two groups (P < 0.05). The microvessel density in the ulcer granulation tissues of the TPH-treated rats was 39.9 vessels/mm², which was greater than in the TP-treated and model control rats, with a significant statistical difference. These results suggest that TPH treatment significantly accelerates the healing of gastric ulcers via stimulating proliferation of gastric epithelial cells and enhancing angiogenesis on gastric ulcer site.
Acetic Acid
;
Animals
;
Epithelial Cells
;
Genetic Therapy
;
Granulation Tissue
;
Hepatocyte Growth Factor*
;
Hepatocytes*
;
Microvessels
;
Models, Animal
;
Rats*
;
Salmonella typhimurium
;
Salmonella*
;
Sodium Bicarbonate
;
Stomach Ulcer*
;
Ulcer
2.3D printed Mg-incorporated polycaprolactone scaffolds for repairing rat skull defects
LI Xiaoye ; LI Qiang ; DAI Zhuo ; DING Meng ; DONG Heng ; DONG Qiangsheng ; BAI Jing ; MOU Yongbin
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(4):249-256
Objective:
To evaluate the bone repair effect of 3D-printed magnesium (Mg)-loaded polycaprolactone (PCL) scaffolds in a rat skull defect model.
Methods:
PCL scaffolds mixed with Mg microparticles were prepared by using 3D printing technology, as were pure PCL scaffolds. The surface morphologies of the two scaffolds were observed by scanning electron microscopy (SEM), and the surface elemental composition was analyzed via energy dispersive spectroscopy (EDS). The physical properties of the scaffolds were characterized through contact angle measurements and an electronic universal testing machine. This study has been reviewed and approved by the Ethics Committee. A critical size defect model was established in the skull of 15 Sprague-Dawley (SD) rats, which were divided into the PCL group, PCL-Mg group, and untreated group, with 5 rats in each group. Micro-CT scanning was performed to detect and analyze skull defect healing at 4 and 8 weeks after surgery, and samples from the skull defect area and major organs of the rats were obtained for histological staining at 8 weeks after surgery.
Results:
The scaffolds had a pore size of (480 ± 25) μm, a fiber diameter of (300 ± 25) μm, and a porosity of approximately 66%. The PCL-Mg scaffolds contained 1.0 At% Mg, indicating successful incorporation of Mg microparticles. The contact angle of the PCL-Mg scaffolds was 68.97° ± 1.39°, indicating improved wettability compared to that of pure PCL scaffolds. Additionally, compared with that of pure PCL scaffolds, the compressive modulus of the PCL-Mg scaffolds was (57.37 ± 8.33) MPa, demonstrating enhanced strength. The PCL-Mg group exhibited the best bone formation behavior in the skull defect area compared with the control group and PCL group at 4 and 8 weeks after surgery. Moreover, quantitative parameters, such as bone volume (BV), bone volume/total volume (BV/TV), bone surface (BS), bone surface/total volume (BS/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and bone mineral density (BMD), of skull defects were better than those in the other groups, indicating the best bone regeneration effect. H&E, Goldner, and VG staining revealed more mineralized new bone formation in the PCL-Mg group than in the other groups, and H&E staining of the major organs revealed good biosafety of the material.
Conclusion
PCL-Mg scaffolds can promote the repair of bone defects and have clinical potential as a new scaffold material for the repair of maxillofacial bone defects.