1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
3.Overview and implications of the cohort construction for autism spectrum disorders based on Internet recruitment
CHEN Xin, GAO Hui, WU De, TAO Fangbiao
Chinese Journal of School Health 2025;46(2):157-161
Abstract
The construction of autism spectrum disorders (ASD) specialty cohorts in China is still in its infancy, and the cost effectiveness is insufficient when relying on diagnostic and treatment processes of child health care to collect ample and high quality data. After 2000, the United States Simons Foundation s ASD Research Initiative, the Early ASD Risk Longitudinal Investigation (EARLI), and the British ASD Study of Infant Siblings (BASIS), which have been built based on Internet recruitment, have provided new insight for the construction of large sample ASD specialty cohorts in China. Future research can further explore and optimize the methods of Internet recruitment, and establish a more comprehensive and accurate ASD specialty cohorts.
4.The Critical Roles of GABAergic Interneurons in The Pathological Progression of Alzheimer’s Disease
Ke-Han CHEN ; Zheng-Jiang YANG ; Zi-Xin GAO ; Yuan YAO ; De-Zhong YAO ; Yin YANG ; Ke CHEN
Progress in Biochemistry and Biophysics 2025;52(9):2233-2240
Alzheimer’s disease (AD), a progressive neurodegenerative disorder and the leading cause of dementia in the elderly, is characterized by severe cognitive decline, loss of daily living abilities, and neuropsychiatric symptoms. This condition imposes a substantial burden on patients, families, and society. Despite extensive research efforts, the complex pathogenesis of AD, particularly the early mechanisms underlying cognitive dysfunction, remains incompletely understood, posing significant challenges for timely diagnosis and effective therapeutic intervention. Among the various cellular components implicated in AD, GABAergic interneurons have emerged as critical players in the pathological cascade, playing a pivotal role in maintaining neural network integrity and function in key brain regions affected by the disease. GABAergic interneurons represent a heterogeneous population of inhibitory neurons essential for sustaining neural network homeostasis. They achieve this by precisely modulating rhythmic oscillatory activity (e.g., theta and gamma oscillations), which are crucial for cognitive processes such as learning and memory. These interneurons synthesize and release the inhibitory neurotransmitter GABA, exerting potent control over excitatory pyramidal neurons through intricate local circuits. Their primary mechanism involves synaptic inhibition, thereby modulating the excitability and synchrony of neural populations. Emerging evidence highlights the significant involvement of GABAergic interneuron dysfunction in AD pathogenesis. Contrary to earlier assumptions of their resistance to the disease, specific subtypes exhibit vulnerability or altered function early in the disease process. Critically, this impairment is not merely a consequence but appears to be a key driver of network hyperexcitability, a hallmark feature of AD models and potentially a core mechanism underlying cognitive deficits. For instance, parvalbumin-positive (PV+) interneurons display biphasic alterations in activity. Both suppressing early hyperactivity or enhancing late activity can rescue cognitive deficits, underscoring their causal role. Somatostatin-positive (SST+) neurons are highly sensitive to amyloid β-protein (Aβ) dysfunction. Their functional impairment drives AD progression via a dual pathway: compensatory hyperexcitability promotes Aβ generation, while released SST-14 forms toxic oligomers with Aβ, collectively accelerating neuronal loss and amyloid deposition, forming a vicious cycle. Vasoactive intestinal peptide-positive (VIP+) neurons, although potentially spared in number early in the disease, exhibit altered firing properties (e.g., broader spikes, lower frequency), contributing to network dysfunction (e.g., in CA1). Furthermore, VIP release induced by 40 Hz sensory stimulation (GENUS) enhances glymphatic clearance of Aβ, demonstrating a direct link between VIP neuron function and modulation of amyloid pathology. Given their central role in network stability and their demonstrable dysfunction in AD, GABAergic interneurons represent promising therapeutic targets. Current research primarily explores three approaches: increasing interneuron numbers (e.g., improving cortical PV+ interneuron counts and behavior in APP/PS1 mice with the antidepressant citalopram; transplanting stem cells differentiated into functional GABAergic neurons to enhance cognition), enhancing neuronal activity (e.g., using low-dose levetiracetam or targeted activation of specific molecules to boost PV+ interneuron excitability, restoring neural network γ‑oscillations and memory; non-invasive neuromodulation techniques like 40 Hz repetitive transcranial magnetic stimulation (rTMS), GENUS, and minimally invasive electroacupuncture to improve inhibitory regulation, promote memory, and reduce Aβ), and direct GABA system intervention (clinical and animal studies reveal reduced GABA levels in AD-affected brain regions; early GABA supplementation improves cognition in APP/PS1 mice, suggesting a therapeutic time window). Collectively, these findings establish GABAergic interneuron intervention as a foundational rationale and distinct pathway for AD therapy. In conclusion, GABAergic interneurons, particularly the PV+, SST+, and VIP+ subtypes, play critical and subtype-specific roles in the initiation and progression of AD pathology. Their dysfunction significantly contributes to network hyperexcitability, oscillatory deficits, and cognitive decline. Understanding the heterogeneity in their vulnerability and response mechanisms provides crucial insights into AD pathogenesis. Targeting these interneurons through pharmacological, neuromodulatory, or cellular approaches offers promising avenues for developing novel, potentially disease-modifying therapies.
5.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
6.Singapore Myeloma Study Group consensus guidelines for the management of patients with newly diagnosed multiple myeloma.
Sanjay DE MEL ; Allison Cy TSO ; Cinnie Y SOEKOJO ; Melissa G OOI ; Chi Ching LIM ; Constance TEO ; Yun Xin CHEN ; Melinda TAN ; Aditi MANJERI ; Zhao Yuan LEE ; Daryl TAN ; Liang King LEE ; Ling CAO ; Yeow Tee GOH ; Chandramouli NAGARAJAN ; Wee Joo CHNG
Annals of the Academy of Medicine, Singapore 2025;54(9):561-584
7.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
8.One new sesquiterpene from Aquilariae Lignum Resinatum.
Jia-Min CAO ; Bin HU ; De-Shang MAI ; Cai-Xin CHEN ; Zhong-Xiang ZHAO ; Wei-Qun YANG
China Journal of Chinese Materia Medica 2025;50(8):2167-2172
The chemical constituents of sesquiterpenes from 95% ethanol extract of Aquilariae Lignum Resinatum were isolated and purified by various column chromatography techniques, including silica gel, Sephadex LH-20, octadecylsilyl(ODS), and semi-preparative high performance liquid chromatography(HPLC). Their planar structures and absolute configurations were elucidated by ultraviolet(UV) spectrometry, infrared(IR) spectroscopy, mass spectrometry(MS), nuclear magnetic resonance(NMR), electronic circular dichroism(ECD), and other techniques. Eight sesquiterpenoids were isolated and identified as(+)-(7R,10R)-selina-4,11-dien-12-dimethoxy-15-al(1),(+)-(7R,10R)-selina-4,11-diene-12,15-dial(2), agalleudesmanol B(3), aquisinenoid C(4), 12,15-dioxo-α-selinen(5), agarospiranic aldehyde B(6), neopetasane(7), and eremophila-7(11),9-dien-8-one(8). Compound 1 was a new compound, and it was the first time to find a dimethoxy substitution on the side chain of eudesmane-type sesquiterpene skeleton.
Sesquiterpenes/isolation & purification*
;
Thymelaeaceae/chemistry*
;
Molecular Structure
;
Drugs, Chinese Herbal/isolation & purification*
;
Magnetic Resonance Spectroscopy
9.Optimization of extraction process for Shenxiong Huanglian Jiedu Granules based on AHP-CRITIC hybrid weighting method, grey correlation analysis, and BP-ANN.
Zi-An LI ; De-Wen LIU ; Xin-Jian LI ; Bing-Yu WU ; Qun LAN ; Meng-Jia GUO ; Jia-Hui SUN ; Nan-Yang LIU ; Hui PEI ; Hao LI ; Hong YI ; Jin-Yu WANG ; Liang-Mian CHEN
China Journal of Chinese Materia Medica 2025;50(10):2674-2683
By employing the analytic hierarchy process(AHP), the CRITIC method(a weight determination method based on indicator correlations), and the AHP-CRITIC hybrid weighting method, the weight coefficients of evaluation indicators were determined, followed by a comprehensive score comparison. The grey correlation analysis was then performed to analyze the results calculated using the hybrid weighting method. Subsequently, a backpropagation-artificial neural network(BP-ANN) model was constructed to predict the extraction process parameters and optimize the extraction process for Shenxiong Huanglian Jiedu Granules(SHJG). In the extraction process, an L_9(3~4) orthogonal experiment was designed to optimize three factors at three levels, including extraction frequency, water addition amount, and extraction time. The evaluation indicators included geniposide, berberine, ginsenoside Rg_1 + Re, ginsenoside Rb_1, ferulic acid, and extract yield. Finally, the optimal extraction results obtained by the orthogonal experiment, grey correlation analysis, and BP-ANN method were compared, and validation experiments were conducted. The results showed that the optimal extraction process involved two rounds of aqueous extraction, each lasting one hour; the first extraction used ten times the amount of added water, while the second extraction used eight times the amount. In the validation experiments, the average content of each indicator component was higher than the average content obtained in the orthogonal experiment, with a higher comprehensive score. The optimized extraction process parameters were reliable and stable, making them suitable for subsequent preparation process research.
Drugs, Chinese Herbal/analysis*
;
Neural Networks, Computer
10.Impact of posterior cruciate ligament resection on the elasticity of the periarticular soft tissue sleeve in the knee joint.
Yun-Feng ZHANG ; De-Jin YANG ; Zhao-Lun WANG ; Yi-Xin ZHOU ; Hao TANG ; Xiang-Dong WU ; Han-Long ZHENG
China Journal of Orthopaedics and Traumatology 2025;38(10):1055-1060
OBJECTIVE:
To evaluate the effects of posterior cruciate ligament(PCL) resection on soft tissue elasticity and knee stability in total knee arthroplasty(TKA).
METHODS:
Six adult cadaveric knee specimens (involving 10 knees) were included in the study. With the assistance of the robotic system(TiRobot Recon, TINAVI, Beijing), total knee arthroplasty (TKA) was performed sequentially using cruciate retaining (CR) prostheses and posterior stabilizing (PS) prostheses. Between the two surgical procedures, the femoral and tibial osteotomy surfaces were not altered;only the posterior cruciate ligament (PCL) was resected and the intercondylar fossa was treated. After installing the femoral trial component, a soft tissue balance solver was used to apply tension ranging from 30 N to 90 N in 5 N increments at 0°, 10°, and 90° of knee flexion. Meanwhile, the medial and lateral joint gaps were measured synchronously. Based on the tension-gap coupling data, the equivalent elastic coefficients of the medial and lateral soft tissue sleeves at different knee flexion angles, as well as the range of the joint line convergence angle (JLCA) under fixed varus-valgus stress, were calculated. Additionally, the gap balance status under 80 N of tension was analyzed. Self-control comparisons of each indicator were conducted before and after PCL resection to analyze the change patterns.
RESULTS:
After PCL resection, in the fully extended position (knee flexion 0°). The medial equivalent elastic coefficient was 32.2 (25.7, 63.3) N·mm-1 for the CR prosthesis and 27.7 (22.0, 51.9) N·mm-1 for the PS prosthesis, and the statistically significant difference (P=0.013). The range of JLCA was 0.41°(0.26, 0.55)° for the CR prosthesis, which was smaller than 0.75° (0.40, 0.98)° for the PS prosthesis, and the difference was statistically significant(P=0.041). At 90° of knee flexion, the medial joint gap was 10.7(10.1, 11.7) mm for the CR prosthesis, which was smaller than 12.1(10.9, 15.1) mm for the PS prosthesis, with a statistically significant difference(P=0.011). No statistically significant differences were observed in other joint gaps.
CONCLUSION
PCL resection reduces the rigidity of the medial soft tissues in the fully extended knee and increases the medial joint gap in the flexed position, thereby affecting knee stability and balance. This finding suggests that PS and CR prostheses may require different morphological designs, and there should be differences in indications and osteotomy strategies between CR-TKA and PS-TKA. CR-TKA is more suitable for patients with preoperative medial soft tissue laxity.
Humans
;
Posterior Cruciate Ligament/physiopathology*
;
Knee Joint/physiopathology*
;
Arthroplasty, Replacement, Knee
;
Elasticity
;
Male
;
Female
;
Middle Aged
;
Aged
;
Biomechanical Phenomena
;
Adult


Result Analysis
Print
Save
E-mail