1.Mechanism of immediate administration of Angong Niuhuang Pills in intervention of traumatic brain injury based on metabolomics and transcriptomics.
Xiao-Tong ZHU ; Liang-Liang TIAN ; Jing-Jing ZHANG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2025;50(10):2750-2760
This study integrates metabolomics and transcriptomics to explore the immediate effects of Angong Niuhuang Pills(ANP) in intervening traumatic brain injury(TBI) in rats. A TBI model was successfully established in rats using the optimized Feeney free-fall impact technique. Rats were randomly divided into sham operation(sham) group, model(Mod) group, positive drug(piracetam) group, ANP low-dose(ANP-L) group, and ANP high-dose(ANP-H) group according to a random number table. Nissl staining and immunofluorescence were used to count the number of Nissl bodies and detect B-cell lymphoma-2(Bcl-2) gene, caspase-3, and tumor protein 53(TP53) expression in brain tissue, and enzyme-linked immunosorbent assay(ELISA) was used to measure prostaglandin-endoperoxide synthase 2(PTGS2) level in rat brain tissue. Metabolomics and transcriptomics analyses were conducted for brain tissue from sham, Mod, and ANP-H groups. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out to indicate the mechanisms of ANP in the intervention of TBI. Integrative metabolomics and transcriptomics analysis revealed the metabolic pathways involved in ANP's intervention in TBI. The results showed that ANP significantly increased the number of Nissl bodies in TBI rat brain tissue, upregulated Bcl-2 expression, and downregulated the levels of caspase-3, TP53, and PTGS2. Compared to the Mod group, the ANP-H group significantly upregulated 12 differential metabolites(DMs) and downregulated 25 DMs. Five key metabolic pathways were identified, including glycerophospholipid metabolism, pyrimidine metabolism, glycine, threonine, and serine metabolism, arginine and proline metabolism, and D-amino acid metabolism. Transcriptomics identified 730 upregulated and 612 downregulated differentially expressed genes(DEGs). Enrichment analysis highlighted that biological functions related to inflammatory responses and apoptotic processes, and key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and mitogen-activated protein kinase(MAPK) were significantly enriched. The data of transcriptomics and metabolomics pinpointed three key metabolic pathways, i.e., glycerophospholipid metabolism, pyrimidine metabolism, and glycine, threonine, and serine metabolism.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Brain Injuries, Traumatic/metabolism*
;
Male
;
Metabolomics
;
Rats, Sprague-Dawley
;
Transcriptome/drug effects*
;
Cyclooxygenase 2/genetics*
;
Brain/metabolism*
;
Caspase 3/genetics*
;
Humans
;
Tumor Suppressor Protein p53/genetics*
2.Promising protective treatment potential of endophytic bacterium Rhizobium aegyptiacum for ulcerative colitis in rats.
Engy ELEKHNAWY ; Duaa ELIWA ; Sebaey MAHGOUB ; Sameh MAGDELDIN ; Ehssan MOGLAD ; Sarah IBRAHIM ; Asmaa Ramadan AZZAM ; Rehab AHMED ; Walaa A NEGM
Journal of Zhejiang University. Science. B 2025;26(3):286-301
Ulcerative colitis (UC) is an inflammatory condition of the intestine, resulting from an increase in oxidative stress and pro-inflammatory mediators. In this study, the extract of endophytic bacterium Rhizobium aegyptiacum was prepared for the first time using liquid chromatography-mass spectrometry (LC-MS). In addition, also for the first time, the protective potential of R. aegyptiacum was revealed using an in vivo rat model of UC. The animals were grouped into four categories: normal control (group I), R. aegyptiacum (group II), acetic acid (AA)-induced UC (group III), and R. aegyptiacum-treated AA-induced UC (group IV). In group IV, R. aegyptiacum was administered at 0.2 mg/kg daily for one week before and two weeks after the induction of UC. After sacrificing the rats on the last day of the experiment, colon tissues were collected and subjected to histological, immunohistochemical, and biochemical investigations. There was a remarkable improvement in the histological findings of the colon tissues in group IV, as revealed by hematoxylin and eosin (H&E) staining, Masson's trichrome staining, and periodic acid-Schiff (PAS) staining. Normal mucosal surfaces covered with a straight, intact, and thin brush border were revealed. Goblet cells appeared magenta in color, and there was a significant decrease in the distribution of collagen fibers in the mucosa and submucosal connective tissues. All these findings were comparable to the respective characteristics of the control group. Regarding cyclooxygenase-2 (COX-2) immunostaining, a weak immune reaction was shown in most cells. Moreover, the colon tissues were examined using a scanning electron microscope, which confirmed the results of histological assessment. A regular polygonal unit pattern was seen with crypt orifices of different sizes and numerous goblet cells. Furthermore, the levels of catalase (CAT), myeloperoxidase (MPO), nitric oxide (NO), interleukin-6 (IL-6), and interlukin-1β (IL-1β) were determined in the colonic tissues of the different groups using colorimetric assay and enzyme-linked immunosorbent assay (ELISA). In comparison with group III, group IV exhibited a significant rise (P<0.05) in the CAT level but a substantial decline (P<0.05) in the NO, MPO, and inflammatory cytokine (IL-6 and IL-1β) levels. Based on reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the tumor necrosis factor-α (TNF-α) gene expression was upregulated in group III, which was significantly downregulated (P<0.05) by treatment with R. aegyptiacum in group IV. On the contrary, the heme oxygenase-1 (HO-1) gene was substantially upregulated in group IV. Our findings imply that the oral consumption of R. aegyptiacum ameliorates AA-induced UC in rats by restoring and reestablishing the mucosal integrity, in addition to its anti-oxidant and anti-inflammatory effects. Accordingly, R. aegyptiacum is potentially effective and beneficial in human UC therapy, which needs to be further investigated in future work.
Animals
;
Colitis, Ulcerative/prevention & control*
;
Rats
;
Male
;
Rhizobium
;
Disease Models, Animal
;
Colon/pathology*
;
Rats, Sprague-Dawley
;
Oxidative Stress
;
Cyclooxygenase 2/metabolism*
3.Curvularin derivatives from hydrothermal vent sediment fungus Penicillium sp. HL-50 guided by molecular networking and their anti-inflammatory activity.
Chunxue YU ; Zixuan XIA ; Zhipeng XU ; Xiyang TANG ; Wenjuan DING ; Jihua WEI ; Danmei TIAN ; Bin WU ; Jinshan TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):119-128
Guided by molecular networking, nine novel curvularin derivatives (1-9) and 16 known analogs (10-25) were isolated from the hydrothermal vent sediment fungus Penicillium sp. HL-50. Notably, compounds 5-7 represented a hybrid of curvularin and purine. The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction, electronic circular dichroism (ECD) calculations, 13C NMR calculation, modified Mosher's method, and chemical derivatization. Investigation of anti-inflammatory activities revealed that compounds 7-9, 11, 12, 14, 15, and 18 exhibited significant suppressive effects against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine macrophage RAW264.7 cells, with IC50 values ranging from 0.44 to 4.40 μmol·L-1. Furthermore, these bioactive compounds were found to suppress the expression of inflammation-related proteins, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), NLR family pyrin domain-containing protein 3 (NLRP3), and nuclear factor kappa-B (NF-κB). Additional studies demonstrated that the novel compound 7 possessed potent anti-inflammatory activity by inhibiting the transcription of inflammation-related genes, downregulating the expression of inflammation-related proteins, and inhibiting the release of inflammatory cytokines, indicating its potential application in the treatment of inflammatory diseases.
Penicillium/chemistry*
;
Mice
;
Animals
;
Anti-Inflammatory Agents/isolation & purification*
;
RAW 264.7 Cells
;
Nitric Oxide/metabolism*
;
Hydrothermal Vents/microbiology*
;
Macrophages/immunology*
;
Molecular Structure
;
Nitric Oxide Synthase Type II/immunology*
;
Cyclooxygenase 2/immunology*
;
Geologic Sediments/microbiology*
;
NF-kappa B/immunology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
4.Five new meroterpenoids from Rhododendron anthopogonoides and their anti-inflammatory activity.
Mengtian LI ; Norbu KELSANG ; Yongqin ZHAO ; Wensen LI ; Feng ZHOU ; PEMA ; Lu CUI ; Xianjie BAO ; Qian WANG ; Xin FENG ; Minghua YANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):881-887
Five meroterpenoids, rhodonoids K-M (1-2), daurichromene E (3), and grifolins A-B (4-5), together with seven known compounds (6-12), were isolated from Rhododendron anthopogonoides. The chemical structures of these compounds were elucidated through comprehensive analysis of high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), ultraviolet (UV), infrared spectroscopy (IR), and nuclear magnetic resonance (NMR) data. Their absolute configurations were determined by comparing experimental electronic circular dichroism (ECD) spectra with computed values. Notably, compounds 1 and 3 demonstrated significant inhibitory effects on lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. These compounds markedly suppressed the mRNA expressions of inflammatory factors, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) while also down-regulating the protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2).
Mice
;
Rhododendron/chemistry*
;
Animals
;
Anti-Inflammatory Agents/isolation & purification*
;
RAW 264.7 Cells
;
Terpenes/isolation & purification*
;
Molecular Structure
;
Tumor Necrosis Factor-alpha/immunology*
;
Cyclooxygenase 2/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Macrophages/immunology*
;
Interleukin-6/immunology*
;
Lipopolysaccharides
;
Interleukin-1beta/immunology*
5.Ten new lignans with anti-inflammatory activities from the leaves of Illicium dunnianum.
Ting LI ; Xiaoqing HE ; Dabo PAN ; Xiaochun ZENG ; Siying ZENG ; Zhenzhong WANG ; Xinsheng YAO ; Wei XIAO ; Haibo LI ; Yang YU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):990-996
The anti-inflammatory phytochemical investigation of the leaves of Illicium dunnianum (I. dunnianum) resulted in the isolation of five pairs of new lignans (1-5), and 7 known analogs (6-12). The separation of enantiomer mixtures 1-5 to 1a/1b-5a/5b was achieved using a chiral column with acetonitrile-water mixtures as eluents. The planar structures of 1-2 were previously undescribed, and the chiral separation and absolute configurations of 3-5 were reported for the first time. Their structures were determined through comprehensive spectroscopic data analysis [nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass (HR-ESI-MS), infrared (IR), and ultraviolet (UV)] and quantum chemistry calculations (ECD). The new isolates were evaluated by measuring their inhibitory effect on NO in lipopolysaccharide (LPS)-stimulated BV-2 cells. Compounds 1a, 3a, 3b, and 5a demonstrated partial inhibition of NO production in a concentration-dependent manner. Western blot and real-time polymerase chain reaction (PCR) assays revealed that 1a down-regulated the messenger ribonucleic acid (mRNA) levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), COX-2, and iNOS and the protein expressions of COX-2 and iNOS. This research provides guidance and evidence for the further development and utilization of I. dunnianum.
Lignans/isolation & purification*
;
Plant Leaves/chemistry*
;
Anti-Inflammatory Agents/isolation & purification*
;
Mice
;
Animals
;
Molecular Structure
;
Plant Extracts/pharmacology*
;
Illicium/chemistry*
;
Cyclooxygenase 2/immunology*
;
Interleukin-6/immunology*
;
Nitric Oxide/metabolism*
;
Cell Line
;
Tumor Necrosis Factor-alpha/immunology*
;
Nitric Oxide Synthase Type II/immunology*
;
Lipopolysaccharides
6.Progress in Prevention and Treatment of Dysplasia in Ulcerative Colitis Based on Cyclooxygenase-2/p53 Axis.
Yi-Lin ZHANG ; Shu-Sen YANG ; Yu-Shan LIU ; Shu-Guang YAN
Acta Academiae Medicinae Sinicae 2024;46(6):940-948
Ulcerative colitis(UC)is a chronic inflammatory bowel disease characterized by non-specific,persistent inflammation in the intestines.This chronic inflammation often increases the risk of serious complications such as colorectal cancer.Dysplasia acts as a driver of cancer development and plays a connecting role in the occurrence and development of chronic intestinal inflammation and colorectal cancer.Cell proliferation/apoptosis imbalance is the driving factor for dysplasia development.The abnormal proliferation/apoptosis of intestinal mucosal epithelial cells may be affected by cyclooxygenase-2(COX-2),tumor suppressor gene p53,or both.Therefore,reasonable regulation of COX-2/p53 axis may be a key to achieving intestinal mucosal proliferation/apoptosis balance.This article discusses the effects and mechanism of COX-2 and p53 in regulating the occurrence and development of dysplasia in UC from the proliferation/apoptosis imbalance of intestinal mucosal epithelial cells,aiming to provide a reference for understanding the mechanism of dysplasia in UC and developing targeted therapeutic drugs.
Colitis, Ulcerative/metabolism*
;
Humans
;
Cyclooxygenase 2/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Intestinal Mucosa/metabolism*
;
Apoptosis
;
Cell Proliferation
7.Study on the anti-sepsis mechanism of ursolic acid by targeting myeloid differentiation protein-2.
Guirong CHEN ; Chang LIU ; Mingbo ZHANG ; Xiaobo WANG
Chinese Critical Care Medicine 2023;35(5):476-481
OBJECTIVE:
To explore the mechanism of ursolic acid in treating sepsis using myeloid differentiation protein-2 (MD-2) as the research carrier.
METHODS:
The affinity of ursolic acid and MD-2 was determined by biofilm interferometry technique, and the bonding mode between ursolic acid and MD-2 was tested with the aid of molecular docking technique. Raw 264.7 cells were cultured in RPMI 1640 medium and subcultured was conducted when the cell density reached 80%-90%. The second-generation cells were used for in the experiment. The effects of 8, 40 and 100 mg/L ursolic acid on cell viability were assessed by methyl thiazolyl tetrazolium (MTT) method. Cells were divided into blank group, lipopolysaccharide (LPS) group (LPS 100 μg/L) and ursolic acid group (100 μg/L LPS treatment after addition of 8, 40 or 100 mg/L ursolic acid). The effect of ursolic acid on the release of cytokines nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukins (IL-6, IL-1β) were evaluated by enzyme-linked immunosorbent assay (ELISA). The influence of ursolic acid on the mRNA expressions of TNF-α, IL-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). The implication of ursolic acid on the protein expressions of LPS-Toll-like receptor 4 (TLR4)/MD-2-nuclear factor-κB (NF-κB) pathway were tested by Western blotting.
RESULTS:
Ursolic acid could bind to the hydrophobic cavity of MD-2 through hydrophobic bond with the amino acid residues of the protein. Therefore, ursolic acid showed high affinity with MD-2 [dissociation constant (KD) = 1.43×10-4]. The cell viability were decreased slightly, with the concentration of ursolic acid increasing, and the cell viability of 8, 40 and 100 mg/L ursolic acid were 96.01%, 94.32% and 92.12%, respectively, and there was no significant difference compared with the blank group (100%). Compared with the blank group, the cytokine level of the LPS group was significantly increased. The level of cytokines were significantly reduced by the treatment of 8, 40 and 100 mg/L ursolic acid, and the higher the concentration, the more obvious effect [compared between 100 mg/L ursolic acid group and LPS group: IL-1β (μmol/L): 38.018±0.675 vs. 111.324±1.262, IL-6 (μmol/L): 35.052±1.664 vs. 115.255±5.392, TNF-α (μmol/L): 39.078±2.741 vs. 119.035±4.269, NO (μmol/L): 40.885±2.372 vs. 123.405±1.291, all P < 0.01]. Compared with the blank group, the mRNA expressions of TNF-α, IL-6, IL-1β, iNOS and COX-2 in the LPS group were significantly increased, and the protein expressions of MD-2, myeloid differentiation factor 88 (MyD88), phosphorylation NF-κB p65 (p-NF-κB p65) and iNOS in the LPS-TLR4/MD-2-NF-κB pathway were significantly up-regulated. Compared with the LPS group, the mRNA expressions of TNF-α, IL-6, IL-1β, iNOS and COX-2 were significantly reduced by the treatment of 100 mg/L ursolic acid bound with MD-2 protein [TNF-α (2-ΔΔCt): 4.659±0.821 vs. 8.652±0.787, IL-6 (2-ΔΔCt): 4.296±0.802 vs. 11.132±1.615, IL-1β (2-ΔΔCt): 4.482±1.224 vs. 11.758±1.324, iNOS (2-ΔΔCt): 1.785±0.529 vs. 4.249±0.811, COX-2 (2-ΔΔCt): 5.591±1.586 vs. 16.953±1.651, all P < 0.01], and the proteins expressions of MD-2, MyD88, p-NF-κB p65 and iNOS in the LPS-TLR4/MD-2-NF-κB pathway were significantly down-regulated (MD-2/β-actin: 0.191±0.038 vs. 0.704±0.049, MyD88/β-actin: 0.470±0.042 vs. 0.875±0.058, p-NF-κB p65/β-actin: 0.178±0.012 vs. 0.571±0.012, iNOS/β-actin: 0.247±0.035 vs. 0.549±0.033, all P < 0.01). However, there was no difference in protein expression of NF-κB p65 among the three groups.
CONCLUSIONS
Ursolic acid inhibits the release and expression of cytokines and mediators and regulates LPS-TLR4/MD-2-NF-κB signaling pathway by blocking MD-2 protein, and thus plays an anti-sepsis role.
Humans
;
Tumor Necrosis Factor-alpha
;
Actins
;
Cyclooxygenase 2
;
Interleukin-6
;
Lipopolysaccharides
;
Lymphocyte Antigen 96
;
Molecular Docking Simulation
;
Myeloid Differentiation Factor 88
;
NF-kappa B
;
Toll-Like Receptor 4
;
Sepsis
;
Cytokines
;
Cell Differentiation
;
RNA, Messenger
8.Chemoprevention of colorectal cancer in general population and high-risk population: a systematic review and network meta-analysis.
Ye MA ; Wen YOU ; Yang CAO ; Xuxia HE ; Jing WANG ; Yuelun ZHANG ; Ji LI ; Jingnan LI
Chinese Medical Journal 2023;136(7):788-798
BACKGROUND:
Many nutritional supplements and pharmacological agents have been reported to show preventive effects on colorectal adenoma and colorectal cancer (CRC). We performed a network meta-analysis to summarize such evidence and assess the efficacy and safety of these agents.
METHODS:
We searched PubMed, Embase, and the Cochrane Library for studies published in English until October 31, 2021 that fit our inclusion criteria. We performed a systematic review and network meta-analysis to assess the comparative efficacy and safety of candidate agents (low-dose aspirin [Asp], high-dose Asp, cyclooxygenase-2 inhibitors [coxibs], calcium, vitamin D, folic acid, ursodeoxycholic acid [UDCA], estrogen, and progesterone, alone or in combination) for preventing colorectal adenoma and CRC. Cochrane risk-of-bias assessment tool was employed to evaluate the quality of each included study.
RESULTS:
Thirty-two randomized controlled trials (278,694 participants) comparing 13 different interventions were included. Coxibs significantly reduced the risk of colorectal adenoma (risk ratio [RR]: 0.59, 95% confidence interval [CI]: 0.44-0.79, six trials involving 5486 participants), advanced adenoma (RR: 0.63, 95% CI: 0.43-0.92, four trials involving 4723 participants), and metachronous adenoma (RR: 0.58, 95% CI: 0.43-0.79, five trials involving 5258 participants) compared with placebo. Coxibs also significantly increased the risk of severe adverse events (RR: 1.29, 95% CI: 1.13-1.47, six trials involving 7109 participants). Other interventions, including Asp, folic acid, UDCA, vitamin D, and calcium, did not reduce the risk of colorectal adenoma in the general and high-risk populations compared with placebo.
CONCLUSIONS:
Considering the balance between benefits and harms, regular use of coxibs for prevention of colorectal adenoma was not supported by the current evidence. Benefit of low-dose Asp for chemoprevention of colorectal adenoma still requires further evidence.
REGISTRATION
PROSPERO, No. CRD42022296376.
Humans
;
Cyclooxygenase 2 Inhibitors
;
Calcium
;
Network Meta-Analysis
;
Vitamins
;
Colorectal Neoplasms/drug therapy*
;
Chemoprevention
;
Aspirin
;
Adenoma/prevention & control*
;
Vitamin D
9.Equivalence of combined decoction and mixed single decoctions of Gegen Qinlian Decoction in alleviating chemotherapy-associated diarrhea.
Min LI ; Xiao-Qin YANG ; Yan-Fen CHENG ; Shu-Yang WU ; Liang ZOU ; Yi-Han WU ; Jin-Ming ZHANG
China Journal of Chinese Materia Medica 2023;48(11):2968-2980
This study compared the chemical profiles, component content, dry paste yield, and pharmacological effects of samples obtained from the mixed single decoctions and the combined decoction of Gegen Qinlian Decoction(GQD), aiming to provide an experimental foundation for evaluating the equivalence of the two decocting methods and the suitability of TCM formula granules in clinical application. The same decoction process was used to prepare the combined decoction and mixed single decoctions of GQD. Ultra-performance liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap MS) was employed to compare the chemical profiles between the two groups. High-performance liquid chromatography(HPLC) was used to compare the content of nine characteristic components between the two groups. Then, a delayed diarrhea mouse model induced by irinotecan was established to compare the pharmacological effects of the two groups on chemotherapy-induced diarrhea. The UPLC-Q-Exactive Orbitrap MS in ESI~+ and ESI~- modes identified 59 chemical components in the compound decoction and mixed single decoctions, which showed no obvious differences in component species. The content of baicalin and wogonoside was higher in the compound decoction, while that of puerarin, daidzein-8-C-apiosylglucoside, berberine, epiberberine, wogonin, glycyrrhizic acid, and daidzein was higher in the mixed single decoctions. Further statistical analysis revealed no significant difference in the content of the nine characteristic components between the compound decoction and the mixed single decoctions. The dry paste yield had no significant difference between the two groups. Compared with the model group, both compound decoction and mixed single decoctions alleviated the weight loss and reduced diarrhea index in mice. Both of them lowered the levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), cyclooxygenase-2(COX-2), intercellular adhesion molecule-1(ICAM-1), interleukin-10(IL-10), malondialdehyde(MDA), and nitric oxide(NO) in the colon tissue. Furthermore, they significantly increased the levels of glutathione peroxidase(GSH-Px) and superoxide dismutase(SOD). Hematoxylin-eosin(HE) staining showed that colon tissue cells were tightly arranged with clear nuclei in both groups without obvious difference. The compound decoction and mixed single decoctions showed no significant differences in chemical component species, content of nine characteristic components, dry paste yield, or the pharmacological effects on alleviating chemotherapy-induced diarrhea. The findings provide a reference for evaluating the flexibility and superiority of combined or single decocting method in the preparation of TCM decoctions or formula granules.
Animals
;
Mice
;
Biological Products
;
Chromatography, High Pressure Liquid
;
Coleoptera
;
Cyclooxygenase 2
;
Diarrhea/drug therapy*
;
Antineoplastic Agents
10.Therapeutic effect and mechanism of Xiaoyao Kangai Jieyu Recipe on mice with breast cancer related depression through regulating COX pathway.
Ying HE ; Man-Shu ZOU ; Ting-Ting REN ; Ping LI ; Yang LIU ; Yuan-Shan HAN
China Journal of Chinese Materia Medica 2023;48(14):3874-3881
This study aimed to investigate the intervention effect and mechanism of Xiaoyao Kangai Jieyu Recipe(XKJR) on hip-pocampal microglia and neuronal damage in mice with breast cancer related depression. The mouse model of breast cancer related depression was established by inoculation of 4T1 breast cancer cells in axilla and subcutaneous injection of corticosterone(30 mg·kg~(-1)). The successfully modeled mice were randomly divided into a model group, a positive drug group(capecitabine 60 mg·kg~(-1)+fluoxetine 19.5 mg·kg~(-1)), and XKJR group(19.5 mg·kg~(-1) crude drug), with 6 in each group. Another 6 normal mice were taken as a normal group. The administration groups were given corresponding drugs by gavage, while the normal and model groups were given an equal volume of distilled water, once a day for 21 consecutive days. The depressive behavior of mice was assessed by glucose consumption test, open field test and novelty-suppressed feeding test. Hematoxylin and eosin(HE) staining and tumor suppression rate were used to evaluate the changes of axillary tumors. The mRNA expressions and the relative protein expressions of interleukin-1β(IL-1β), interleukin-18(IL-18), cyclooxyganese-2(COX-2) and glutamyl-prolyl-tRNA synthetase(EPRs) in the hippocampus of mice were determined by quantitative real-time polymerase chain reaction(qRT-PCR) and immunohistochemistry, respectively. Immunofluorescence was performed to detect the mean fluorescence intensity of CD11b, a marker of hippocampal microglia activation. Nissler staining and transmission electron microscopy were employed to observe the morphological changes and the ultramorphological changes of hippocampal neurons, respectively. The experimental results indicated that compared with the normal group, the model group had reduced glucose consumption and lowered number of total activities in open field test(P<0.05, P<0.01), prolonged first feeding latency in no-velty-suppressed feeding test(P<0.01), and significant depression-like behavior; the contents of IL-1β, IL-18, COX-2, and EPRs in hippocampus were increased(P<0.05, P<0.01), with hippocampal microglia activation and obvious neuronal damage. Compared with the model group, the positive drug group and the XKJR group presented an improvement in depressive behaviors, a decrease in the contents of IL-1β, IL-18, COX-2 and EPRs in hippocampus, and an alleviation in the activation of hippocampal microglia and neuronal damage; the tumor suppression rates of positive drug and XKJR were 40.32% and 48.83%, respectively, suggesting a lower tumor growth rate than that of the model group. In summary, XKJR may improve hippocampal microglia activation and neuronal damage in mice with breast cancer related depression through activating COX signaling pathway.
Mice
;
Animals
;
Depression/genetics*
;
Interleukin-18
;
Cyclooxygenase 2/genetics*
;
Hippocampus
;
Glucose
;
Neoplasms

Result Analysis
Print
Save
E-mail